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ABSTRACT
Real-world GPS trajectory datasets are essential for geographical
applications such as map inference, map matching, traffic detec-
tion, etc. Currently only a handful of GPS trajectory datasets are
publicly available and the quality of these datasets varies. Most of
the existing datasets have limited geographical coverage (a focus
on China or the USA), have low sampling rates and less contextual
information of the GPS pings. This paper presents Grab-Posisi, the
first GPS trajectory dataset of Southeast Asia from both developed
countries (Singapore) and developing countries (Jakarta, Indonesia).
The data were collected very recently in April 2019 with a 1 second
sampling rate, which is the highest amongst all the existing open
source datasets. It also has richer contextual information, including
the accuracy level, bearing, speed and labels trajectories by data
acquisition source (Android or iOS phones) and driving mode (Car
or Motorcycle). The dataset contains more than 88 million pings
and covers more than 1 million kms. Experiments on the dataset
demonstrate new challenges for various geographical applications.
The dataset is of great value and a significant resource for the
community to benchmark and revisit existing algorithms.

CCS CONCEPTS
• Information systems→ Geographic information systems.
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1 INTRODUCTION
Real-world GPS trajectory datasets are essential for geographical
applications [12] such as map inference, map matching, traffic pre-
diction etc. Map inference refers to the task of reconstructing road
networks from GPS trajectories [11]. The process of map matching
aims to snap GPS trajectories onto a road network [20, 31, 40, 41].

∗The dataset must not be assumed to indicate any of Grab’s business interest
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Finally, the goal of traffic prediction is to forecast the traffic situa-
tion at a future time [42, 44]. All of these applications depend on
the presence of a real-world GPS trajectory dataset.

However, currently only a handful of GPS trajectory datasets
are publicly available and the quality of the datasets varies (see
Section 2 for details). Most of the existing open source datasets
have at least one of the following drawbacks:

• they are outdated;
• they are geographically limited (coming from China and
USA, they focus only on structured scenarios); none of the
top 10 cities with the worst traffic in the TomTom traffic
index [5] is included;

• they cover only a small area of a city;
• they have a low sampling rate (seconds to minutes);
• they contain less contextual information (e.g., no accuracy
level, bearing, speed); or

• they are small scale.
This paper addresses all the above issues and presents Grab-

Posisi1, the first GPS trajectory dataset of Southeast Asia from both
developed countries (Singapore) and developing countries (Jakarta,
Indonesia), where Jakarta is ranked at the 7th place in TomTom’s
traffic index [5]. The data were collected from Grab drivers’ phones
while in transit. Grab is Southeast Asia’s leading ride-sharing com-
pany [3]. The term Posisi refers to position in Bahasa, hence we
name the dataset Grab-Posisi capturing its essential Southeast
Asian nature.

The whole dataset contains in total 84K trajectories that consist
of 88,847,080 GPS pings, which cover 1,003,510 km over a duration
of 30,104 hours. The data were collected very recently in April 2019
with a 1 second sampling rate, which is the highest amongst all the
publicly available datasets. It also has richer contextual information,
including the accuracy level, bearing and speed. The accuracy level
is important because GPS measurements are noisy and the true
location can be anywhere inside a circle centered at the reported
location with a radius equal to the accuracy level. The bearing is the
horizontal direction of travel, measured in degrees relative to true
north. Finally, the speed is reported in meters/second over ground.
We will elaborate in Section 4 how such contextual information can
be leveraged to improve existing solutions of various geographical
applications.

In addition, this dataset was collected from smartphones and
labeled by data acquisition source. Compared with existing datasets,
where data were collected mostly from taxis’ dedicated devices, GPS

1The dataset is available upon request sent to grab-posisi.geo@grab.com
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trajectories collected from smartphones are less stable and more
challenging to handle [29]. Since all the trajectories were collected
from Grab drivers’ phones while in transit, we label each trajectory
by phone device type being either Android or iOS. To the best of
our knowledge, this is the first dataset which differentiates such
device information. Experiments in Sections 3 and 4 demonstrate
very different data characteristics between Android and iOS.

Furthermore, we label the trajectories by driving mode (Car or
Motorcycle). While cars are common in developed countries such as
the USA, motorcycles on two-wheels are one of the main modes of
transportation in Southeast Asia. Ride-sharing and delivery indus-
tries (e.g., food delivery and logistics) in Southeast Asia mostly use
motorcycles [21, 23]. Our dataset provides an opportunity for the
research community to make a significant impact by performing
deeper investigations into the motorcycle ecosystem.

The remaining parts of this paper are organised as follows. Sec-
tion 2 presents related work that compares the pros and cons be-
tween the existing datasets and Grab-Posisi. Section 3 describes
the methodology, volume, data format and statistics of the dataset.
Section 4 elaborates on how the dataset can be used in various
applications and also exemplifies new challenges in real-world ap-
plications. Section 5 concludes the paper.

2 RELATEDWORK
Only a handful of GPS trajectory datasets are publicly available,
but the quality of the datasets varies. Besides latitude, longitude
and timestamps that all the datasets include, Table 1 compares the
datasets’ geography, data source, production year, sampling rate
and the contextual information contained (accuracy level, bear-
ing, speed). The data acquisition sources are in general classified
into two major categories: smartphones and dedicated GPS devices.
As the authors of [29] pointed out, compared with dedicated GPS
devices, the data quality of GPS trajectories generated from smart-
phones is less stable, which poses new challenges in geographical
applications. Previously most of the GPS trajectory datasets were
collected from cars [11, 14, 22, 25, 38, 45–47], a method which was
not common in developing countries. As a trend, with the wide
adoption of smartphones, more and more GPS data have become
available [8].

Microsoft [43, 45–47] published a GPS trajectory dataset with
transportation mode labels (driving, taking a bus, riding a bike
and walking) collected in 2008. It covers 28 big cities in China and
some cities in the USA, South Korea, and Japan. The GPS devices
are composed of stand-alone GPS receivers (Magellan Explorist
210/300, G-Rays 2 and QSTARZ BTQ-1000P) and GPS-equipped
phones. The sampling rate is between 2–5 seconds. Each GPS ping
contains the information of latitude, longitude, altitude, speed and
bearing. However, at current time, this dataset is rather outdated.

Tsinghua University [25] has provided a taxi trajectory dataset
of Beijing collected in May 2009 with 129 million GPS pings. 75.36%
of the pings are at the highest sampling rate of 1 minute. Bearing
and speed are provided. Additional information such as if a taxi is
vacant or not is also provided. However, the sampling rate is too
low for many applications.

ETH Zurich [32] referred to a GPS trajectory dataset collected by
a private sector company in 2009 from 4,882 participants using an

on-person GPS logger for 6.65 days on average. Zhejiang University
[19] used a dataset collected by Hangzhou City Traffic Bureau,
which were generated by GPS devices on 7,475 taxis from April
2009 to April 2010. The dataset has about 3 billion records and is
sampled at a frequency of about 1 minute. Unfortunately we are
not able to locate either of the two datasets on the Internet.

The University of Illinois at Chicago [14] published a GPS trajec-
tory dataset collected by its University of Illinois at Chicago shuttle
buses in 2012. The sampling rate is by far the highest at 3 seconds,
covering 2,869 km. Nonetheless, this dataset only covers a small
area of the city.

In [38], Beijing Jiaotong University mentions a GPS trajectory
dataset fromXi’An, China. However, the dataset does not seem to be
publicly available on the Internet. Similarly, in [22], the Tsinghua-
Berkeley Shenzhen Institute mentions a GPS trajectory dataset from
Beijing, China. However, the dataset also does not seem to be open
source.

Another publicly available GPS trajectory dataset was collected
by the authors of [11] in 2015. It covers two major cities, namely
Athens and Berlin. The Athens dataset was obtained from a school
bus, with a sampling rate of 20 seconds to 30 seconds, covering
7,224 km. The Berlin dataset was obtained from a taxi fleet, with a
sampling rate of 40 seconds, covering 41,116 km. Nonetheless, this
dataset only covers a small area of each city.

The authors of [27] published a GPS trajectory dataset generated
by a single user jogging in Joensuu between 2014-11-16 and 2015-
04-25. This dataset is rather small with 43,891 GPS pings. None of
the values for bearing, accuracy level or speed are provided.

Didi Chuxing, as one of the biggest ride-sharing companies in
China [8], launched the Didi Chuxing GAIA Initiative to share their
drivers’ GPS trajectories. Currently it covers two cities in China,
Xi’an city and Chengdu city. The GPS trajectories shared are from
2016 with a sampling rate of around 2 to 4 seconds. Latitude and
longitude of GPS pings are provided while bearing, accuracy and
speed are not.

One study by Bolbol et al. [15] mentions a few small-scale GPS
trajectory datasets. However, due to their small size they are less
useful for experiments. There is also a Beijing Taxi trip dataset
available in the IEEE DataPort [4]. However, the IEEE DataPort is a
subscription service which many researchers may not be able to
access.

It is worth noting that OpenStreetMap [2] maintains a crowd-
sourced GPS trajectory repository. Users all over the world are free
to upload their GPS tracks. Due to its crowd-sourcing nature, the
GPS trajectories collected have a broad spectrum of characteristics
and thus in order to utilize them a significant amount of effort
would be required for data cleaning and data preprocessing.

This paper presents the first GPS trajectory dataset of South-
east Asia for both developed countries (Singapore) and developing
countries (Jakarta, Indonesia). The data were collected recently
during April 2019 with 1 second sampling rate, which is the highest
amongst all the existing open source datasets. Furthermore, it con-
tains rich contextual information such as bearing, accuracy level
and speed.
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3 DATASET
3.1 Methodology, Volume and Data Format
The dataset is sampled from Grab drivers’ trajectories with the
drivers’ personal information encrypted and the real start/end lo-
cations removed. The collection dates range from 2019-04-08 to
2019-04-21 (inclusive, UTC) with 6,000 trajectories gathered per
day. The trajectories were collected from drivers’ phones during
driving. The trajectories must not be assumed to indicate any of
Grab’s business interests.

Table 2: Trajectory Category

City Mode Device Total Trajectories

Singapore (SIN) Car iOS 14K
Singapore (SIN) Car Android 14K
Jakarta (JKT) Car iOS 14K
Jakarta (JKT) Car Android 14K
Jakarta (JKT) Motorcycle iOS 14K
Jakarta (JKT) Motorcycle Android 14K

Table 2 shows the trajectory categories, which show the geo-
graphical coverage, the driving-mode and the device variation. We
cover two cities in Southeast Asia, Singapore and Jakarta, repre-
senting a developed and a developing country, respectively. We
also for the first time label trajectories by their driving mode being
either Car or Motorcycle. We further categorise if the trajectories
are collected from Android or iOS devices and will demonstrate
in a later section that GPS quality varies by reporting devices. For
each category we have collected 1,000 trajectories per day for 2
weeks from 2019-04-08 to 2019-04-21, and therefore each category
includes 14,000 trajectories in total.

The whole dataset contains in total 84K trajectories that consist
of 88,847,080 GPS pings, covering 1,003,510 km over a total span
of 30,104 hours. The average trajectory length is 11.94 km and the
average duration per trip is 21.50 minutes.

Each trajectory is serialised in a file in Apache Parquet format.
The whole dataset size is around 2 GB. Each GPS ping is associ-
ated with values for a trajectory_ID, latitude, longitude, timestamp
(UTC), accuracy level, bearing and speed (Table 3). The GPS sam-
pling rate is 1 second, which is the highest among all the existing
open source datasets.

Table 3: Attributes of GPS Pings

Attribute Data Type Remark/Format
Trajectory_ID string identifier for the trajectory

Latitude float WGS84
Longitude float WGS84
Timestamp bigint UTC

Accuracy Level float circle radius, in meter
Bearing float degrees relative to true north
Speed float in meters/second
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Besides latitude and longitude of a GPS ping, the accuracy level,
bearing, and speed provide the context when a GPS point is col-
lected. When smartphones collect GPS pings, the operating system
applies fuzzy logic to generate the context information from multi-
ple location providers [7, 9]. The accuracy level indicates the accu-
racy in the horizontal plane. With Android devices [7], the accuracy
level refers to the radius within which the location confidence is
68%. In other words, given a circle centered at the reported latitude
and longitude, and with a radius equal to the accuracy level, then
there is a 68% probability that the true location is inside the circle.
A value of 0.0 indicates an unavailable accuracy. In iOS devices [9],
the reported latitude and longitude identify the center of a circle
with a radius of the reported accuracy level. The true location is
assumed to be randomly distributed inside the circle. A negative
accuracy level indicates that the latitude and longitude are invalid.
Bearing is the horizontal direction of travel of this device, and is not
related to the device’s orientation. Bearing is measured in degrees
relative to true north. In Android devices [7], the bearing ranges
within (0.0, 360.0] degrees, where 0.0 indicates an invalid bearing.
In iOS devices [9], if two consecutive GPS pings are at the same
location, the bearing is 180. Speed is measured in meters/second
over ground. In Android devices [7], 0.0 represents an invalid speed.
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Figure 1: Trajectory Statistics

3.2 Trajectory Statistics
Figure 1 shows the distribution of the trajectory lengths and du-
rations. The length of a trajectory is defined as the sum of the
Haversine distance between two consecutive GPS pings that occur
within 10 seconds and their Haversine distance is within 2 km.
Figure 1a shows that most of the trajectories are within 50 km
while the extreme trajectories go as long as 200 km. The average
trajectory length is 11.90 km.

Figure 1b plots the distribution of the trajectory durations. Most
of the trajectories have a time span within 1 hour. The average
trajectory duration is 21.50 minutes.

3.3 Sampling Rate and Temporal Statistics
The GPS sampling rate is 1 second. Though we observe trajectory
breakage in some cases due to several reasons, e.g., a vehicle passing
through a tunnel. Figure 2a shows the time interval between two
consecutive pings. Most (> 90%) of the time intervals are 1 second.

Figure 2b shows the ping counts by local hour-of-the-day. It is
clear that Singapore has two peaks, one around 9 am and the other
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Figure 2: Sampling Rate and Temporal Statistics

around 6 pm. In contrast, Jakarta’s traffic situation is more complex
in that the evening peak hours are more evident than the morning
peak hours. This observation sheds light on the hyper-active local
characteristics of Southeast Asia.

3.4 Accuracy Level Distribution
One of the major contributions of this paper is its inclusion of the
accuracy level in the dataset. In this section, we illustrate the differ-
ent accuracy behaviors between Android and iOS devices. Figure 3
compares the accuracy level reported by Android and iOS devices
from Singapore and Jakarta. The x-axis represents the accuracy
level in meters. Recall that the accuracy level roughly indicates
the radius of the circle within which the true location lies with a
certain probability. The lower the accuracy level, the more precise
the reported GPS ping is. The y-axis shows the normalised count
of the GPS pings. The normalisation is such that the normalised
ping count from different categories are comparable. Formally,

normalised pinд count o f accuracy level x f or cateдory cat

=
pinд count o f accuracy level x o f cateдory cat

pinд count o f cateдory cat
×C

where C = 20, 000, 000.
Figure 3a reports the normalised ping count distribution for

categories ⟨SIN, Car, Android⟩ and ⟨SIN, Car, iOS⟩. It is clear that
the accuracy levels reported by Android and iOS devices differ
significantly. Firstly, the maximum accuracy level from Android
devices is 127meters while the iOS reported accuracy can be as large
as 149 km. Secondly, the accuracy level reported by iOS devices has
a long tail, meaning that the reported locations are less trustworthy.
Figure 3c reports the normalised ping count distribution for Jakarta,
and we observe a similar long-tail pattern.

Figure 3b zooms into the accuracy level of less than 130 meters
for ⟨SIN, Car, Android⟩ and ⟨SIN, Car, iOS⟩. We observe for both
Android and iOS devices, as the accuracy level increases, the ping
count first increases and then decreases around the accuracy level
of 10 meters. Interestingly, at an accuracy level of 50 meters, the
trend changes for both but in the opposite direction. The same
pattern is also observed in Figure 3d for Jakarta, except that the
trend for iOS is rather smooth.

The observations from the dataset about the accuracy levels
should caution the usage of the accuracy level in applications.
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(b) Singapore (Zoomed)
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(c) iOS vs Android in Jakarta
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Figure 3: Accuracy Differs by Device

(a) Spatial Coverage (Singapore)

(b) GPS Density. Highways have more GPS.

Figure 4: Spatial Coverage (Singapore)

3.5 Spatial Coverage
Figures 4 and 5 show the spatial coverage of the dataset. Compared
with existing datasets, which only cover a specific area of a city,
the Grab-Posisi dataset encompasses almost the whole island of
Singapore (Figure 4a). On the right (east) of Figure 4a, we can see
that even the roads surrounding Changi Airport, which are more
relevant for commercial traffic, are covered. Figure 4b depicts the
GPS density in Singapore. Red color represents high density while
green represents low density. Expressways in Singapore are clearly
visible because of their dense GPS pings.

Figure 5a illustrates that the Grab-Posisi dataset encloses not
only central Jakarta but also extends to external highways. Fig-
ure 5b depicts the GPS density of cars in Jakarta. Compared with
Singapore, trips in Jakarta are spread out in all different areas, not
only concentrated on highways. A similar pattern can be observed
for motorcycles (Figure 5c). When comparing cars (Figure 5b) and
motorcycles (Figure 5c) in Jakarta, it is worth noting that motor-
cycles tend to avoid highways. This hyper-local characteristic can
be explored for better route planning by delivery industries in
Indonesia.

(a) Spatial Coverage (Jakarta)

(b) GPS Density (Car)

(c) GPS Density (Motorcycle)

Figure 5: Spatial Coverage (Jakarta)

4 APPLICATIONS
4.1 On Map Inference
The quality of map data has a significant impact on the effective-
ness of geo-applications including Geographic Information Systems
(GIS), Intelligent Transportation Systems (ITS), Location-based Ser-
vices (LBS), etc. However, the frequent, dynamic update of road net-
works in the traditional, manual way can be very time-consuming
and labour-intensive, resulting in issues such as important roads
being missed or real-time traffic conditions being unavailable. Re-
cently, a significant number of research efforts have concentrated
on reconstructing road networks from GPS trajectories automati-
cally [10, 16, 33].
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A high quality real-world dataset is essential for evaluating and
comparing proposed map inference approaches [11]. As mentioned
in Section 2, current public GPS datasets mostly have at least one of
the following shortcomings: 1) small scale of the dataset, 2) sparse
coverage, 3) low sampling rate, or 4) a single attribute where only
GPS coordinates are available. The Grab-Posisi dataset addresses
all these issues and provides the community with a large-scale,
attribute-rich GPS trajectory dataset for the development of new
map inference algorithms. Next, we showcase the basic use of the
dataset in map topology and geometry inference, and in road at-
tribute mining.

4.1.1 Map Topology and Geometry. A road network is generally de-
noted as a directed graph, where the edges represent road segments,
and the vertices represent the starting and ending points of the road
segments. Map inference refers to the problem of transforming a
set of noisy GPS trajectories to the geographical graph structure to
represent the road network. In this section, we evaluate the map
inference algorithm proposed by Davies et al. [18] for an area in
Jakarta (the region identified by geohash location value [1]=qqggg).

The map inference algorithm [18] works as follows. It first splits
the 2D space in the horizontal plane into square cells units and
generates a 2D histogram indicating the number of GPS pings found
in each cell. The intuition is that the frequency value attached
to each cell represents the confidence that the cell is part of a
road. Note that it is likely that a cell with frequency value of 0 is
surrounded by cells with a high(er) frequency. A blur filter is then
used to fill small gaps by averaging cell values with neighboring
cells. Next the algorithm binarizes the frequency values to be either
0 or 1, indicating whether there is a road or not, by thresholding.
In our experiment we use Gaussian adaptive thresholding [6]. We
generate a grey-scale image such that a pixel value equals 255 (i.e.,
white) if the frequency value is 1. Figure 6 shows the generated
grey-scale image for Jakarta in the region of geohash. As illustrated,
it identifies most of the roads in the area.

Figure 6: Grey-scale Image after Adaptive Thresholding
(geohash=qqggg)

From the grey-scale image we can now infer the road geometry.
The shape of the roads is identified by applying a classic contour

Figure 7: An example of a contour
(corresponding to part of the top right corner of Figure 6)

detection method, where a contour is a curve joining all the con-
tinuous points (along the boundary). Figure 7 shows one of the
extracted contours. We can see that contours do not necessarily
consist of straight line segments and can be of any shape. The
center-line of a contour is deemed to be the road geometry. Davies
et al. [18] use a Voronoi graph for center-line detection.

Figure 8 shows a snippet of the inferred map (Figure 8b) from
our GPS trajectories (Figure 8a). We can see that the algorithm of
[18] roughly infers the skeleton of the underlining map. However,
the inferred curved road is broken into dis-joined pieces. Further,
it miss-interprets the shape of the roundabout in the bottom right
corner.

It is worth emphasizing that in countries like Indonesia, the road
network can be very intricate and complex. The Grab-Posisi dataset
can be of great value for benchmarking and improving existing map
inference algorithms in such challenging real-world situations.

(a) Raw GPS Trajectories (b) Inferred Map

Figure 8: Map Inference Method using Kernel Density
Estimation (KDE) [18]

4.1.2 Road Attributes. With the availability of dense historical GPS
trajectories, it is also possible to automatically infer road semantics
(e.g., the directionality of roads such as one-way, the type of roads
such as bridges, speed bumps, etc.) based on data-driven approaches.
First, map matching algorithms need to be applied to infer the most
likely road segment onto which each GPS point belongs. Next, the
road attributes can be inferred based on all the GPS trajectories
that traversed it.
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Figure 9 exemplifies a road attribute inference, namely a one-way
directionality detection of individual roads. Figure 9a depicts two
one-way roads in Jakarta. Figure 9b overlays the Grab-Posisi GPS
trajectory dataset on the two one-way roads, where red color indi-
cates west direction of GPS trajectories and green color indicates
east direction. It is quite evident that the Grab-Posisi GPS dataset
can be used for one-way road detection.

(a) One-way roads (b) GPS Trajectories
(Red=West, Green=East)

Figure 9: Road Attribute Inference

4.2 On Map Matching
The problem of map matching refers to the task of automatically de-
termining the correct routewhere the driver has traveled on a digital
map, given a sequence of raw and noisy GPS points. The correction
of the raw GPS data has been important for many location-based ap-
plications such as navigation, tracking, and road attribute detection
as aforementioned [20, 31, 40, 41]. In this section, we demonstrate
how rich attributes can be used in map matching algorithms.

Among the advanced statistics-based map matching algorithms,
the Hidden Markov Model (HMM) is one of the most widely used
methods, which models the road emission and transition probabili-
ties based on the measurement noise level and the road network
layout [30, 34]. It has been shown that HMM-based map matching
obtains very good matching accuracy when dealing with high-
sampling-rate GPS trajectories (e.g., sampling intervals less than
30 seconds). More specifically, let L = {l1, l2, . . . , ln } denote a se-
quence of raw GPS locations, and E = {e1, e2, . . . , em } denote a set
of road segments of the road network. The emission probability is
modeled as

P(lt |pt = ei ) =
1

√
2πσ

e
−
dist (ei ,lt )

2

2σ 2 (1)

where σ is the standard deviation of GPS measurements, dist(ei , lt )
represents theminimum great circle distance between road segment
ei and GPSmeasurement lt . P(lt |pt = ei ) is the emission probability
for road segment ei , which can be interpreted as the likelihood that
the GPS measurement lt would be observed if the vehicle were
actually on road segment ei .

In practice, it is not feasible to calculate P(lt |pt = ei ) for all
ei ∈ E. A common approach is to select only road segments within
a distance radius dthreshold of the GPS location lt . It is debatable
if dthreshold is a constant. If dthreshold is set to be small, then we
may miss the real segment that the GPS location is on. This happens
especially for noisy GPS locations that occur far away from their
true locations. One the other hand, if dthreshold is large, then we
need to process a large number of possible segments in central city
areas, where road networks are dense. This results in unnecessary
computations and consequently higher running time.

Table 4: Snippet of Noisy Raw GPS Pings

Latitude and Longitude Accuracy Level
1.2851133,103.8443881 45
1.2852771,103.8444593 42
1.2853581,103.8443996 45
1.2854508,103.8443068 44
1.2855187,103.8441327 43
1.2856159,103.8439763 46
1.2854326,103.8439028 28
1.2853808,103.8437961 22
1.2853013,103.8437471 17
1.2853081,103.8436901 16
1.2853379,103.8436345 15

The accuracy levels provided in the Grab-Posisi dataset can
be of great use to address this issue. In this section, we demon-
strate a simple usage of accuracy levels by setting dthreshold =
accuracy level × 2, such that different GPS pings utilize different
distance thresholds. In addition, we set σ = dthreshold .

The transition probability of the HMM model is defined as

P(pt = ej |pt−1 = ei ) =
1
β
e
−
dt
β (2)

where dt = |dist(lt , lt+1) − dist_route(lt , lt+1)|. Functions
dist(lt , lt+1) and dist_route(lt , lt+1) calculate the Haversine
distance and routing distance in meters between the two GPS
measurements, respectively. The transition probability expresses
the probability of a vehicle moving from road segment ei to road
segment ej . In our experiment, we empirically set β = 10.

Finally, the Viterbi algorithm is utilized to compute the optimal
path, by using dynamic programming to find the path that maxi-
mizes the product of the emission and transition probabilities. The
recovered path provides a candidate road segment for each location
measurement in L.

Figure 10 shows the map matching results (in fuchsia) from both
a noisy GPS track (Figure 10a) and a high quality GPS track (Fig-
ure 10b) extracted from the Grab-Posisi dataset. Figure 10a clearly
shows that the raw GPS pings are far away from their true locations
(in light blue). Table 4 lists the accuracy levels of the GPS pings.
We can see that this kind of GPS noise is captured by the accuracy
levels. The first few GPS pings have much higher accuracy levels
than the last few GPS pings. By taking into account of accuracy
levels, we successfully match the GPS pings onto the road network
(in fuchsia).

Figure 10b shows a high quality GPS track where all the GPS
pings have an accuracy level equal to 5meters. There are a few roads
near the GPS pings, but with an accuracy level as small as 5 meters,
the map matching algorithm confidently eliminates segments that
are slightly further, e.g., the Jalan Jati Waringin road and the Jalan
Tol Bekasi-Cawang-Kampung Melayu road. As a positive benefit,
in this case the running time is at least halved compared to a noisy
track.

This experiment demonstrates the benefits of having and utiliz-
ing the accuracy levels in mapmatching.We encourage the research
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(a) Noisy GPS Track. (Table 4)
High accuracy levels help enlarge search radius to match

successfully.

(b) Good GPS Track.
Low accuracy levels help reduce search radius to reduce

running time.

Figure 10: Accuracy Levels Help Improve Map Matching
Light blue: raw GPS track (Direction: from East to West)

Fuchsia: map matched result

community to further explore the rich attributes provided in this
dataset to improve map matching algorithms.

4.3 On Traffic Detection and Forecast
In addition to the inference of a static digital map, the Grab-Posisi
GPS dataset can also be used to perform real-time traffic forecast-
ing, which is very important for congestion detection, flow control,
route planning, and navigation [42, 44]. Some examples of the fun-
damental indicators that are mostly used to monitor the current
status of traffic conditions include the average speed, volume, and
density on each road segment. These variables can be computed
based on drivers’ GPS trajectories and used to predict the future
traffic conditions. Accurate traffic forecasting has received increas-
ing research attention in recent years, as it is a challenging and
crucial component in the development of intelligent traffic systems.

Recently, Yu et al. proposed a novel Spatio-Temporal Graph Con-
volutional Network (STGCN) to predict traffic from GPS trajecto-
ries [42]. Meanwhile, a similar framework was presented by Zhao et
al., namely a temporal graph convolutional network (T-GCN) that
combines a graph convolutional network with a gated recurrent
unit to simultaneously learn the complex topological structures
for spatial dependence and the dynamic traffic changes for tem-
poral dependence. While traditionally, statistical models such as
the autoregressive integrated moving average have been usually
used for time-series analysis [35], such methods have been recently
challenged by machine learning based techniques, where better
prediction accuracy can be obtained. The development of such
data-driven machine learning, especially deep learning techniques,
rely heavily on the availability and quality of traffic datasets. In
fact, traffic in Jakarta is notoriously bad and the city is ranked at
the 7th place in TomTom’s 2018 traffic index [5]. We believe that
the release of the Grab-Posisi large-scale GPS trajectory dataset
will be beneficial for the community, as it will provide a founda-
tion for benchmarks for real-time traffic prediction and its open
source nature will facilitate the comparison among different traffic
forecasting techniques.

In addition, the dataset provides an approximate ground-truth
of the free-flow speed of expressways in Singapore and Jakarta.
Free-flow speeds are widely used as a road quality measure, and

also as a default routing/traffic value when real-time data are too
sparse or not available.

4.4 On Trajectory Completion and Next
Location Prediction

The performance of the aforementioned applications usually relies
on having dense trajectories. For example, the map matching accu-
racy of HMM-based methods will decrease significantly when being
applied to sparse trajectories. However, due to the power restric-
tions and bandwidth limitations on mobile devices, it is likely that
only sparse trajectories are collected to reduce cost. To solve this
issue, a few efforts have been made to investigate trajectory comple-
tion, i.e., given low-sampling-rate GPS trajectories, we would like
to predict the points in-between and recover high-sampling-rate
routes [24]. Li et al. presented a knowledge-based trajectory com-
pletion method [24], which completes the geometry of trajectories’
historical data without knowing the information of the underlying
road network. As the Grab-Posisi dataset has a dense coverage in
the geospatial domain, it provides large historical trajectories for
the estimation of traffic flows. And therefore, it can be used as a
good evaluation dataset for trajectory completion problems.

Related to trajectory completion, another location prediction
problem is defined as, given a sequence of GPS locations, we would
like to predict the location where the driver will go next. Existing
work on next location prediction mostly focuses on check-in data
from social networks [26, 28, 39]. Liu et al. proposed a novel spatio-
temporal recurrent neural network to model the local temporal
and spatial contexts to improve the accuracy of the next location
prediction [26]. Yao et al. further presented a semantics-enriched re-
current model that jointly learns the embeddings of multiple factors
including user, location, time, and keywords [39]. The Grab-Posisi
dataset provides large-scale real-world GPS trajectories of people
for fine-grained next location prediction. It would be interesting to
evaluate the existing methods, and develop new algorithms based
on GPS trajectories in addition to people’s check-in records at social
networks.
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4.5 On Mode Detection
Transportation mode detection refers to the task of identifying the
travel mode of a user (some examples of transportation mode in-
clude walk, bike, car, bus, etc.), which is a fundamental yet challeng-
ing GPS trajectory classification problem [37]. In recent decades,
research on transportation mode detection has been widely dis-
cussed, with a considerable number of approaches having been
proposed. For example, Xiao et al. introduced an approach based
on ensemble learning to detect the transportation mode using GPS
data only [36]. Hand-crafted features such as speed, acceleration,
and turn angle were estimated based on GPS trajectories, which
were used to perform the mode classification. Dabiri and Heaslip
presented a deep learning based approach, which utilizes convolu-
tional neural networks to automatically extract high-level features
from the raw GPS inputs to improve the precision accuracy [17].

However, most of the existing work has developed their algo-
rithms based on only one or two types of sensor data, where GPS
and accelerometer values are the top two widely used data types.
Walk, car, and bus are the three transportation modes that have
been studied the most in previous work, while only a few efforts
have been made on the investigation of less popular modes such as
motorcycle and subway. The Grab-Posisi dataset will be beneficial
for the research community in the following two aspects. First, the
GPS trajectories are associated with rich attributes including GPS
accuracy, bearing, and speed in addition to the latitude and longi-
tude of geo-coordinates. Second, our dataset contains trajectories
of both car and motorcycle. We also provide the device type (iOS
or Android) that is used for data collection. It would be interesting
to study the impact of the different sensor and device types on the
performance of transportation detection.

As an example, we illustrate different bearing patterns in Fig-
ure 11. Figure 11a compares the distribution of sample standard
deviation of bearings in trajectories between Car and Motorcycle
from Android devices in Jakarta. It is clear that bearing could be a
good indicator to classify driving mode. Figure 11b observes similar
effects in iOS devices. Interestingly, the iOS category sees a signif-
icant number of trajectories with a small (< 5) sample standard
deviation of the bearings. This finding should caution the usage of
bearings if the device information is not provided. Bearings could
be explored further for better mode classification.
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Figure 11: Bearing Pattern Differs by Driving Mode

4.6 Economics Perspective
The real-world GPS trajectories of people reveal realistic travel
patterns and demands, which can be of great help for city planning.
Recently, Bao et al. proposed a data-driven approach for bike lane
planning based on large-scale real-world bike trajectories [13]. As
there are some realistic constraints faced by governments such as
budget limitations and construction inconvenience, it is important
to incorporate both the planning authorities’ requirements and the
realistic travel demands mined from trajectories for intelligent city
planning. For example, the trajectories of cars can provide sug-
gestions how to schedule highway constructions. The trajectories
of motorcycles can help the government to choose the optimal
locations to construct motorcycle lanes for safety concerns.

5 CONCLUSIONS AND FUTUREWORK
This paper presents the first GPS trajectory dataset of Southeast
Asia from both developed countries (Singapore) and developing
countries (Jakarta, Indonesia), covering more than 1 million km.
The data have been collected recently with a sampling rate as high
as 1 second. It also has richer contextual information, including
the accuracy level, bearing and speed that can be leveraged to
improve existing technologies. The trajectories are also labeled
by data acquisition source (Android or iOS phones) and driving
mode (Car or Motorcycle), which makes a valuable dataset for
supervised mode classification. The dataset is of great value and
a significant resource for the community for benchmarking and
revisiting existing technologies.

In future, we plan to add more labels to the dataset. For instance,
label the ground truth of map matching results.
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