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ABSTRACT
Real-world GPS trajectory datasets are essential for geographical
applications such as map inference, map matching, traffic detec-
tion, etc. Currently only a handful of GPS trajectory datasets are
publicly available and the quality of these datasets varies. Most of
the existing datasets have limited geographical coverage (a focus
on China or the USA), have low sampling rates and less contextual
information of the GPS pings. This paper presents Grab-Posisi, the
first GPS trajectory dataset of Southeast Asia from both developed
countries (Singapore) and developing countries (Jakarta, Indonesia).
The data were collected very recently in April 2019 with a 1 second
sampling rate, which is the highest amongst all the existing open
source datasets. It also has richer contextual information, including
the accuracy level, bearing, speed and labels trajectories by data
acquisition source (Android or iOS phones) and driving mode (Car
or Motorcycle). The dataset contains more than 88 million pings
and covers more than 1 million kms. Experiments on the dataset
demonstrate new challenges for various geographical applications.
The dataset is of great value and a significant resource for the
community to benchmark and revisit existing algorithms.

CCS CONCEPTS
• Information systems→ Geographic information systems.
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1 INTRODUCTION
Real-world GPS trajectory datasets are essential for geographical
applications [12] such as map inference, map matching, traffic pre-
diction etc. Map inference refers to the task of reconstructing road
networks from GPS trajectories [11]. The process of map matching
aims to snap GPS trajectories onto a road network [20, 31, 40, 41].
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Finally, the goal of traffic prediction is to forecast the traffic situa-
tion at a future time [42, 44]. All of these applications depend on
the presence of a real-world GPS trajectory dataset.

However, currently only a handful of GPS trajectory datasets
are publicly available and the quality of the datasets varies (see
Section 2 for details). Most of the existing open source datasets
have at least one of the following drawbacks:

• they are outdated;
• they are geographically limited (coming from China and
USA, they focus only on structured scenarios); none of the
top 10 cities with the worst traffic in the TomTom traffic
index [5] is included;

• they cover only a small area of a city;
• they have a low sampling rate (seconds to minutes);
• they contain less contextual information (e.g., no accuracy
level, bearing, speed); or

• they are small scale.
This paper addresses all the above issues and presents Grab-

Posisi1, the first GPS trajectory dataset of Southeast Asia from both
developed countries (Singapore) and developing countries (Jakarta,
Indonesia), where Jakarta is ranked at the 7th place in TomTom’s
traffic index [5]. The data were collected from Grab drivers’ phones
while in transit. Grab is Southeast Asia’s leading ride-sharing com-
pany [3]. The term Posisi refers to position in Bahasa, hence we
name the dataset Grab-Posisi capturing its essential Southeast
Asian nature.

The whole dataset contains in total 84K trajectories that consist
of 88,847,080 GPS pings, which cover 1,003,510 km over a duration
of 30,104 hours. The data were collected very recently in April 2019
with a 1 second sampling rate, which is the highest amongst all the
publicly available datasets. It also has richer contextual information,
including the accuracy level, bearing and speed. The accuracy level
is important because GPS measurements are noisy and the true
location can be anywhere inside a circle centered at the reported
location with a radius equal to the accuracy level. The bearing is the
horizontal direction of travel, measured in degrees relative to true
north. Finally, the speed is reported in meters/second over ground.
We will elaborate in Section 4 how such contextual information can
be leveraged to improve existing solutions of various geographical
applications.

In addition, this dataset was collected from smartphones and
labeled by data acquisition source. Compared with existing datasets,
where data were collected mostly from taxis’ dedicated devices, GPS

1The dataset is available upon request sent to grab-posisi.geo@grab.com
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trajectories collected from smartphones are less stable and more
challenging to handle [29]. Since all the trajectories were collected
from Grab drivers’ phones while in transit, we label each trajectory
by phone device type being either Android or iOS. To the best of
our knowledge, this is the first dataset which differentiates such
device information. Experiments in Sections 3 and 4 demonstrate
very different data characteristics between Android and iOS.

Furthermore, we label the trajectories by driving mode (Car or
Motorcycle). While cars are common in developed countries such as
the USA, motorcycles on two-wheels are one of the main modes of
transportation in Southeast Asia. Ride-sharing and delivery indus-
tries (e.g., food delivery and logistics) in Southeast Asia mostly use
motorcycles [21, 23]. Our dataset provides an opportunity for the
research community to make a significant impact by performing
deeper investigations into the motorcycle ecosystem.

The remaining parts of this paper are organised as follows. Sec-
tion 2 presents related work that compares the pros and cons be-
tween the existing datasets and Grab-Posisi. Section 3 describes
the methodology, volume, data format and statistics of the dataset.
Section 4 elaborates on how the dataset can be used in various
applications and also exemplifies new challenges in real-world ap-
plications. Section 5 concludes the paper.

2 RELATEDWORK
Only a handful of GPS trajectory datasets are publicly available,
but the quality of the datasets varies. Besides latitude, longitude
and timestamps that all the datasets include, Table 1 compares the
datasets’ geography, data source, production year, sampling rate
and the contextual information contained (accuracy level, bear-
ing, speed). The data acquisition sources are in general classified
into two major categories: smartphones and dedicated GPS devices.
As the authors of [29] pointed out, compared with dedicated GPS
devices, the data quality of GPS trajectories generated from smart-
phones is less stable, which poses new challenges in geographical
applications. Previously most of the GPS trajectory datasets were
collected from cars [11, 14, 22, 25, 38, 45–47], a method which was
not common in developing countries. As a trend, with the wide
adoption of smartphones, more and more GPS data have become
available [8].

Microsoft [43, 45–47] published a GPS trajectory dataset with
transportation mode labels (driving, taking a bus, riding a bike
and walking) collected in 2008. It covers 28 big cities in China and
some cities in the USA, South Korea, and Japan. The GPS devices
are composed of stand-alone GPS receivers (Magellan Explorist
210/300, G-Rays 2 and QSTARZ BTQ-1000P) and GPS-equipped
phones. The sampling rate is between 2–5 seconds. Each GPS ping
contains the information of latitude, longitude, altitude, speed and
bearing. However, at current time, this dataset is rather outdated.

Tsinghua University [25] has provided a taxi trajectory dataset
of Beijing collected in May 2009 with 129 million GPS pings. 75.36%
of the pings are at the highest sampling rate of 1 minute. Bearing
and speed are provided. Additional information such as if a taxi is
vacant or not is also provided. However, the sampling rate is too
low for many applications.

ETH Zurich [32] referred to a GPS trajectory dataset collected by
a private sector company in 2009 from 4,882 participants using an

on-person GPS logger for 6.65 days on average. Zhejiang University
[19] used a dataset collected by Hangzhou City Traffic Bureau,
which were generated by GPS devices on 7,475 taxis from April
2009 to April 2010. The dataset has about 3 billion records and is
sampled at a frequency of about 1 minute. Unfortunately we are
not able to locate either of the two datasets on the Internet.

The University of Illinois at Chicago [14] published a GPS trajec-
tory dataset collected by its University of Illinois at Chicago shuttle
buses in 2012. The sampling rate is by far the highest at 3 seconds,
covering 2,869 km. Nonetheless, this dataset only covers a small
area of the city.

In [38], Beijing Jiaotong University mentions a GPS trajectory
dataset fromXi’An, China. However, the dataset does not seem to be
publicly available on the Internet. Similarly, in [22], the Tsinghua-
Berkeley Shenzhen Institute mentions a GPS trajectory dataset from
Beijing, China. However, the dataset also does not seem to be open
source.

Another publicly available GPS trajectory dataset was collected
by the authors of [11] in 2015. It covers two major cities, namely
Athens and Berlin. The Athens dataset was obtained from a school
bus, with a sampling rate of 20 seconds to 30 seconds, covering
7,224 km. The Berlin dataset was obtained from a taxi fleet, with a
sampling rate of 40 seconds, covering 41,116 km. Nonetheless, this
dataset only covers a small area of each city.

The authors of [27] published a GPS trajectory dataset generated
by a single user jogging in Joensuu between 2014-11-16 and 2015-
04-25. This dataset is rather small with 43,891 GPS pings. None of
the values for bearing, accuracy level or speed are provided.

Didi Chuxing, as one of the biggest ride-sharing companies in
China [8], launched the Didi Chuxing GAIA Initiative to share their
drivers’ GPS trajectories. Currently it covers two cities in China,
Xi’an city and Chengdu city. The GPS trajectories shared are from
2016 with a sampling rate of around 2 to 4 seconds. Latitude and
longitude of GPS pings are provided while bearing, accuracy and
speed are not.

One study by Bolbol et al. [15] mentions a few small-scale GPS
trajectory datasets. However, due to their small size they are less
useful for experiments. There is also a Beijing Taxi trip dataset
available in the IEEE DataPort [4]. However, the IEEE DataPort is a
subscription service which many researchers may not be able to
access.

It is worth noting that OpenStreetMap [2] maintains a crowd-
sourced GPS trajectory repository. Users all over the world are free
to upload their GPS tracks. Due to its crowd-sourcing nature, the
GPS trajectories collected have a broad spectrum of characteristics
and thus in order to utilize them a significant amount of effort
would be required for data cleaning and data preprocessing.

This paper presents the first GPS trajectory dataset of South-
east Asia for both developed countries (Singapore) and developing
countries (Jakarta, Indonesia). The data were collected recently
during April 2019 with 1 second sampling rate, which is the highest
amongst all the existing open source datasets. Furthermore, it con-
tains rich contextual information such as bearing, accuracy level
and speed.
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3 DATASET
3.1 Methodology, Volume and Data Format
The dataset is sampled from Grab drivers' trajectories with the
drivers' personal information encrypted and the real start/end lo-
cations removed. The collection dates range from 2019-04-08 to
2019-04-21 (inclusive, UTC) with 6,000 trajectories gathered per
day. The trajectories were collected from drivers' phones during
driving. The trajectories must not be assumed to indicate any of
Grab's business interests.

Table 2: Trajectory Category

City Mode Device Total Trajectories

Singapore (SIN) Car iOS 14K
Singapore (SIN) Car Android 14K
Jakarta (JKT) Car iOS 14K
Jakarta (JKT) Car Android 14K
Jakarta (JKT) Motorcycle iOS 14K
Jakarta (JKT) Motorcycle Android 14K

Table 2 shows the trajectory categories, which show the geo-
graphical coverage, the driving-mode and the device variation. We
cover two cities in Southeast Asia, Singapore and Jakarta, repre-
senting a developed and a developing country, respectively. We
also for the �rst time label trajectories by their driving mode being
either Car or Motorcycle. We further categorise if the trajectories
are collected from Android or iOS devices and will demonstrate
in a later section that GPS quality varies by reporting devices. For
each category we have collected 1,000 trajectories per day for 2
weeks from 2019-04-08 to 2019-04-21, and therefore each category
includes 14,000 trajectories in total.

The whole dataset contains in total 84K trajectories that consist
of 88,847,080 GPS pings, covering 1,003,510 km over a total span
of 30,104 hours. The average trajectory length is 11.94 km and the
average duration per trip is 21.50 minutes.

Each trajectory is serialised in a �le in Apache Parquet format.
The whole dataset size is around 2 GB. Each GPS ping is associ-
ated with values for a trajectory_ID, latitude, longitude, timestamp
(UTC), accuracy level, bearing and speed (Table 3). The GPS sam-
pling rate is 1 second, which is the highest among all the existing
open source datasets.

Table 3: Attributes of GPS Pings

Attribute Data Type Remark/Format
Trajectory_ID string identi�er for the trajectory

Latitude �oat WGS84
Longitude �oat WGS84
Timestamp bigint UTC

Accuracy Level �oat circle radius, in meter
Bearing �oat degrees relative to true north
Speed �oat in meters/second
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Besides latitude and longitude of a GPS ping, the accuracy level,
bearing, and speed provide the context when a GPS point is col-
lected. When smartphones collect GPS pings, the operating system
applies fuzzy logic to generate the context information from multi-
ple location providers [7, 9]. The accuracy level indicates the accu-
racy in the horizontal plane. With Android devices [7], the accuracy
level refers to the radius within which the location con�dence is
68%. In other words, given a circle centered at the reported latitude
and longitude, and with a radius equal to the accuracy level, then
there is a 68% probability that the true location is inside the circle.
A value of 0.0 indicates an unavailable accuracy. In iOS devices [9],
the reported latitude and longitude identify the center of a circle
with a radius of the reported accuracy level. The true location is
assumed to be randomly distributed inside the circle. A negative
accuracy level indicates that the latitude and longitude are invalid.
Bearing is the horizontal direction of travel of this device, and is not
related to the device's orientation. Bearing is measured in degrees
relative to true north. In Android devices [7], the bearing ranges
within (0.0, 360.0] degrees, where 0.0 indicates an invalid bearing.
In iOS devices [9], if two consecutive GPS pings are at the same
location, the bearing is 180. Speed is measured in meters/second
over ground. In Android devices [7], 0.0 represents an invalid speed.

(a) Length (b) Duration

Figure 1: Trajectory Statistics

3.2 Trajectory Statistics
Figure 1 shows the distribution of the trajectory lengths and du-
rations. The length of a trajectory is de�ned as the sum of the
Haversine distance between two consecutive GPS pings that occur
within 10 seconds and their Haversine distance is within 2 km.
Figure 1a shows that most of the trajectories are within 50 km
while the extreme trajectories go as long as 200 km. The average
trajectory length is 11.90 km.

Figure 1b plots the distribution of the trajectory durations. Most
of the trajectories have a time span within 1 hour. The average
trajectory duration is 21.50 minutes.

3.3 Sampling Rate and Temporal Statistics
The GPS sampling rate is 1 second. Though we observe trajectory
breakage in some cases due to several reasons,e.g., a vehicle passing
through a tunnel. Figure 2a shows the time interval between two
consecutive pings. Most (> 90%) of the time intervals are 1 second.

Figure 2b shows the ping counts by local hour-of-the-day. It is
clear that Singapore has two peaks, one around 9 am and the other

(a) Sampling Rate (b) Ping Count by Hour

Figure 2: Sampling Rate and Temporal Statistics

around 6 pm. In contrast, Jakarta's tra�c situation is more complex
in that the evening peak hours are more evident than the morning
peak hours. This observation sheds light on the hyper-active local
characteristics of Southeast Asia.

3.4 Accuracy Level Distribution
One of the major contributions of this paper is its inclusion of the
accuracy level in the dataset. In this section, we illustrate the di�er-
ent accuracy behaviors between Android and iOS devices. Figure 3
compares the accuracy level reported by Android and iOS devices
from Singapore and Jakarta. Thex-axis represents the accuracy
level in meters. Recall that the accuracy level roughly indicates
the radius of the circle within which the true location lies with a
certain probability. The lower the accuracy level, the more precise
the reported GPS ping is. They-axis shows the normalised count
of the GPS pings. The normalisation is such that the normalised
ping count from di�erent categories are comparable. Formally,

normalised ping count o f accuracy level x f or category cat

=
ping count o f accuracy level x of category cat

ping count o f category cat
� C

whereC = 20;000;000.
Figure 3a reports the normalised ping count distribution for

categorieshSIN, Car, Androidi andhSIN, Car, iOSi . It is clear that
the accuracy levels reported by Android and iOS devices di�er
signi�cantly. Firstly, the maximum accuracy level from Android
devices is 127 meters while the iOS reported accuracy can be as large
as 149 km. Secondly, the accuracy level reported by iOS devices has
a long tail, meaning that the reported locations are less trustworthy.
Figure 3c reports the normalised ping count distribution for Jakarta,
and we observe a similar long-tail pattern.

Figure 3b zooms into the accuracy level of less than 130 meters
for hSIN, Car, Androidi and hSIN, Car, iOSi . We observe for both
Android and iOS devices, as the accuracy level increases, the ping
count �rst increases and then decreases around the accuracy level
of 10 meters. Interestingly, at an accuracy level of 50 meters, the
trend changes for both but in the opposite direction. The same
pattern is also observed in Figure 3d for Jakarta, except that the
trend for iOS is rather smooth.

The observations from the dataset about the accuracy levels
should caution the usage of the accuracy level in applications.
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