
Interaction-Focused Anomaly Detection
on Bipartite Node-and-Edge-Attributed Graphs

Rizal Fathony
Grab

Jakarta, Indonesia
rizal.fathony@grab.com

Jenn Ng
Grab

Singapore
jenn.ng@grab.com

Jia Chen
Grab

Singapore
jia.chen@grab.com

Abstract—Many anomaly detection applications naturally pro-
duce datasets that can be represented as bipartite graphs (user–
interaction–item graphs). These graph datasets are usually sup-
plied with rich information on both the entities (nodes) and
the interactions (edges). Unfortunately, previous graph neural
network anomaly models are unable to fully capture the rich
information and produce high-performing detections on these
graphs, as they mostly focus on homogeneous graphs and
node attributes only. To overcome the problem, we propose a
new graph anomaly detection model that focuses on the rich
interactions in bipartite graphs. Specifically, our model takes a
bipartite node-and-edge-attributed graph and produces anomaly
scores for each of its edges and then for each of its bipartite
nodes. We design our model as an autoencoder-type model with
a customized encoder and decoder to facilitate the compression of
node features, edge features, and graph structure into node-level
latent representations. The reconstruction errors of each edge
and node are then leveraged to spot the anomalies. Our network
architecture is scalable, enabling large real-world applications.
Finally, we demonstrate that our method significantly outper-
forms previous anomaly detection methods in the experiments.

Index Terms—Anomaly Detection, Graph Neural Networks

I. INTRODUCTION

Identifying behaviors that differ singularly from the majority
has become an important area in various applications across
many industries [1]. The occurrence of these (rare) anomaly
behaviors may have serious implications in many domains.
In the finance area, for example, the occurrence of anomaly
events may indicate financial frauds such as stolen cards
or money laundering [2], whereas, in a network security
system, anomalous events could mean security breaches [3].
For this reason, developing machine learning algorithms for
anomaly detection has become one of the essential research
areas for many fields above, as well as other fields such as
manufacturing, healthcare, insurance, and many others [4].

In most settings, anomaly detection is done without label
supervision, i.e., in an unsupervised learning fashion [4]. This
provides benefits over supervised learning techniques due to its
flexibility. Getting anomaly labels is usually hard as anomalous
events rarely occur [4]. Additionally, in real-world applications
like fraud detection, fraudsters are incentivized to adversarially
innovate their methods of conducting fraud. This makes any
supervised models relying on historical labels unable to detect
new types of fraud [5]. Having a high-performing unsuper-
vised anomaly detection system is helpful in these cases.

Bipartite graphs are the main abstraction for modeling
interactions between two groups, commonly referred to as the
user–interaction–item graph [6], [7]. Some examples are the
consumer–purchase–product graph on e-commerce websites,
the user–review–movie graph on movie review websites, ip-
address–request–server graph in network monitoring systems,
etc. In real-world applications, those bipartite graphs are usu-
ally supplied with a lot of information on both the entity (node)
and the interaction (edge). For example, in e-commerce trans-
actions, both the consumer and product nodes have rich infor-
mation, such as consumer profiles and historical preferences,
product descriptions, categories, etc. The transaction itself
also has rich information, such as price, discount, payment,
reviews, etc. To be able to produce accurate anomaly detection
systems, this rich information needs to be considered by the
model, in addition to the graph structure itself. For example,
two customers purchasing the same product, one may conduct
a fraud transaction, whereas another one may perform a legit
transaction, depending on the transaction’s payment profile.

Attributed graphs provide a tool to capture the rich
information by encoding them as the node and edge features.
Therefore, the model’s ability to work on bipartite node-and-
edge-attributed graphs is crucial for the applications above.
Unfortunately, previous anomaly detection models are unable
to fully take into account the rich information in the graph.
Most of the graph neural networks (GNN) based anomaly de-
tection models for attributed graphs only handle homogeneous
graphs (such as DOMINANT [8], AnomalyDAE [9], etc. [10]–
[13]) or graphs with node attributes only (such as [8]–[14]).
Other unsupervised graph models handle bipartite graphs, but
only accept non-attributed graphs and mostly only focus on
node embedding rather than anomaly detection [6], [7], [15]–
[17]. In general, many GNN models accept edge features.
However, those models are usually developed for supervised
learning settings rather than unsupervised settings. Extending
those models to unsupervised anomaly detection tasks is not
trivial. In addition, many graph anomaly detection models,
such as DOMINANT and AnomalyDAE, rely on having access
to the full adjacency matrix in the learning process. This limits
the practicality of the models for real-world applications as
they have scalability issues when handling large-size graphs.

Motivated by the shortcomings above, we propose a
new graph neural network model for unsupervised anomaly

detection on bipartite node-and-edge-attributed graphs. We
name our method the Bipartite Node-and-Edge-Attributed
Networks (GraphBEAN). To achieve the desired property,
GraphBEAN compresses the bipartite input graph with its
node and edge features into low-dimensional (node-only)
latent representations for each node in both node-sets, using a
series of customized graph convolution layers; and then aims
to reconstruct the topological structure of the graph as well
as its node and edge attributes. This network construction
forces the latent node representations to encode information
about the graph structure, (K-hops) neighboring nodes and
edges, as well as the attributes attached to those nodes and
edges. The reconstruction errors of the edges and the nodes
following the encoder-decoder phase above are then leveraged
to spot the anomalous edges and nodes in the input graph.

In addition, GraphBEAN is designed with scalability in
mind via customized neighborhood sampling. This enables
it to be applied to large-size graph data. GraphBEAN is
also capable of performing inductive learning and is therefore
applicable to newly observed data. We finally demonstrate the
empirical benefit of our method compared to previous graph
anomaly models on several public bipartite graph datasets.
To the best of our knowledge, GraphBEAN is the first GNN
anomaly model for bipartite node-and-edge-attributed graphs.

II. RELATED WORKS

Classical anomaly detection methods on attributed graphs
can be grouped into several categories [5]. The first category
focuses on anomalies that deviate significantly from other
members of specific communities [18]–[20]. Other anomaly
detection models focus on identifying rare substructures in the
graph [21]–[23]. Shah et al. [24] provide a greedy algorithm
for clustering and scoring nodes based on edge attributes. Fi-
nally, Li et al. [25] and Peng et al. [26] provide residual-based
anomaly models where the anomaly score is calculated from
the residual between true data and estimated data. Despite the
research progress above, classical models are constrained by
their shallow learning mechanism, limiting their capability to
detect complex modalities of the interactions in the graph [8].

In recent years, advances in deep neural network archi-
tectures for graph data have been growing fast due to their
superior performance, particularly in supervised and semi-
supervised settings. Graph Convolutional Network (GCN) [27]
provides a fast generalization of convolutional operation to
general graph structures. GraphSAGE [28] extends the GCN
architecture to enable inductive learning by sampling and
aggregating features from the local neighborhood. Many other
architectures with slightly different flavors, such as Graph
Attention Networks (GAT) [29], and Relational GCN (RGCN)
[30], were also successful in their respective learning settings.

Motivated by the success of the GNN architectures in
supervised and semi-supervised settings, several methods have
been proposed to bring the benefit of GNN models to
anomaly detection problems. DOMINANT [8] provides an
autoencoder-like architecture for graph anomaly detection,
where the anomaly score is computed from the autoencoder’s

reconstructed error. AnomalyDAE [9] extends the architecture
with two autoencoders, each one for the graph structure and
the attributes. AEGIS [31] enables graph anomaly detection
models to be applied in inductive settings where we want to
apply the model to new unobserved sub-graphs. Other GNN
models, such as AdONE [10], GAAN [11], ANEMONE [12],
GUIDE [32], CONAD [13], AHEAD [14], VGOD [33], and
ACT [34] were also proposed for anomaly detection problems
under slightly different settings.

III. PROBLEM FORMULATION

We start our problem formulation by describing our no-
tations as follows. We represent scalar values with italic
fonts (e.g., k), whereas vectors and matrices are represented
with lower-case and upper-case bold fonts (e.g., x and X),
respectively. We also use calligraphic fonts to denote sets
(e.g., U and E). In some cases, sets can also be denoted with
upper-case letters (e.g., U and V). In all of those symbols, we
use both sub-script and super-script to annotate the variables
(e.g., Xu and xi). Using the conventions above, we define the
bipartite attributed graph studied in this paper as follows:

Definition 1: A bipartite node-and-edge-attributed graph
G = (U ,V, E ,Xu,Xv,Xe) consists of:

• the first set of nodes U = {u1, u2, · · · , unu
};

• the second set of nodes V = {v1, v2, · · · , vnv
};

• the set of edges E , indexed using ei,j , i ∈ {1, · · · , nu},
j ∈ {1, · · · , nv}, with ne represents its cardinality;

• Xu ∈ Rnu×mu , the features for every node in U;
• Xv ∈ Rnv×mv , the features for every node in V;
• Xe ∈ Rne×me , the features for every edge in E .

Here, n is the number of nodes/edges, and m represents the
dimension of node/edge features. The subscripts in n and m
indicate which set the variables represent (e.g., nu for the set
U and ne for the set of edges E).

The structure of the attributed graph G is represented in
an adjacency-like matrix A ∈ Rnu×nv , where its (i, j)-th
item Ai,j = 1 if there is an edge between ui and vj , or
otherwise Ai,j = 0. Note that unlike the adjacency matrix
in a regular (homogeneous) graph, matrix A need not be a
square matrix as the number of nodes in U and V can be
different. We also define N as the neighboring operator that
returns the list of all neighboring nodes. Specifically, for a
node u in the first node-set, N (ui) = {vj ∈ V | Ai,j = 1; j ∈
{1, · · · , nv}}. Similarly, for a node v in the second node-set,
N (vj) = {ui ∈ U | Ai,j = 1; i ∈ {1, · · · , nu}}. In addition,
we define another function M which behaves similarly to N .
However, instead of returning neighboring nodes, it returns the
edges connecting the target node to the neighboring nodes. In
particular, M(ui) = {ei,j ∈ E | Ai,j = 1; j ∈ {1, · · · , nv}}
and M(vj) = {ei,j ∈ E | Ai,j = 1; i ∈ {1, · · · , nu}}.

As in many previous anomaly detection formulations [8],
[9], [12], [31], we formalize anomaly detection as a ranking
problem with a scoring function, where a larger score means
a higher degree of abnormality.

Problem 1: Given a bipartite node-and-edge-attributed
graph G = (U ,V, E ,Xu,Xv,Xe), our task is to produce

scoring functions applicable to each edge e ∈ E , as well
as each node u ∈ U and v ∈ V , such that the edges and
nodes that differ singularly from the majority in terms both
the structure and attribute information should be given higher
anomaly score.

Specifically, as we have three different sets (edges and two
node types), we produce three scoring functions: scoree(·),
scoreu(·), and scorev(·); each for scoring the edges, the nodes
in U , and the nodes in V , respectively.

IV. METHODOLOGY

In this section, we will describe our method for address-
ing anomaly detection on bipartite node-and-edge-attributed
graphs (Problem 1). The key part of our network architecture
is in the design of the encoder and decoder to accommodate
the input graph and to produce the desired anomaly scores.
However, before going deeper into the architecture, we will
describe the building blocks of our network, i.e., the convolu-
tion and message passing operations.

A. Graph Convolution and Message Passing

We first describe the notations for individual node and edge
features and representations. Let xu

i denotes the features for
node ui in U with i ∈ {1, · · · , nu}, xv

j denotes the features
for node vj in V with i ∈ {1, · · · , nv}, whereas xe

i,j denotes
the features for edge ei,j in E . Our network consists of K
(even number) convolution layers, where we use half of them
for the encoder and another half for the feature decoder. We
use the lowercase k to enumerate the convolution layer. To
represent the intermediate node/edge representations of layer
k, we use lowercase h and add {·}(k) super-script to the
notation. Specifically, {hu

i }(k), {hv
j}(k), and {he

i,j}(k) denote
the k-th layer representation for node ui in U , node vj in V ,
and edge ei,j in E , respectively.

Our convolution operation takes the previous node repre-
sentations of each node in U and V , i.e.: {hu

i }(k−1) and
{hv

j}(k−1), as well as the previous edge representations, i.e.:
{he

i,j}(k−1). It then performs message passing and outputs
new node and edge representations: {hu

i }(k), {hv
j}(k), and

{he
i,j}(k). The design of our convolution operation is influ-

enced by GraphSAGE [28], where instead of training distinct
representation for each node, it trains a set of aggregator
functions that learns to aggregate feature information from
a node’s local neighborhood. Certainly, several modifications
need to be made, as we need to produce two types of node
representations (for U and V), as well as edge representations.
In addition, the convolution operation also needs to incorporate
edge features in addition to the node features.

The compute the new representations, {hu
i }(k), {hv

j}(k),
and {he

i,j}(k), we first collect the messages passed to the
particular node/edge. The messages to a node ui in U
come from the aggregator functions over the neighboring
node representations, the aggregator functions over the
edge representations connected to ui, and its own previous
representations. The messages to node vi in V follow
similarly. We also collect messages passed to an edge ei,j in

E , where it simply comes from the nodes connected to the
edge, i.e., ui and vj , and its own previous representation. The
equations below formally describe how the messages passed
to ui, vj , and ei,j are computed as:

Msg[)ui]
(k) =

{
Agg

{
{hv

j}(k−1) | ∀vj ∈ N (ui)
}
∪

Agg
{
{he

i,j}(k−1) | ∀ei,j ∈ M(ui)
}
∪ {hu

i }(k−1)
}

(1)

Msg[)vj]
(k) =

{
Agg

{
{hu

i }(k−1) | ∀ui ∈ N (vj)
}
∪

Agg
{
{he

i,j}(k−1) | ∀ei,j ∈ M(vj)
}
∪ {hv

j}(k−1)
}

(2)

Msg[)ei,j]
(k)=

{
{hu

i }(k−1)∪{hv
j}(k−1)∪{he

i,j}(k−1)
}

(3)

Here, ∪ represents the concatenation operator, where we
concatenate messages that come from different sources. The
aggregation function Agg could be a simple aggregation
function like Mean and Max, a combination of both, or more
complex aggregation functions (e.g., LSTM and Pooling).
Figure 1a depicts the flow of message passing.

After collecting the messages for each node and edge, we
compute the next representations. We pass the messages to a
linear operation parameterized by W and b. We normalize the
output of the linear operation using batch normalization (BN)
and pass it to an activation function as follows:

{hu
i }(k) = ReLU

(
BN

(
W(k)

u · Msg[)ui]
(k) + b(k)

u

))
(4)

{hv
j}(k) = ReLU

(
BN

(
W(k)

v · Msg[)vj]
(k) + b(k)

v

))
(5)

{he
i,j}(k)=ReLU

(
BN

(
W(k)

e · Msg[)ei,j]
(k)+b(k)

e

))
(6)

The weight and bias parameters in the linear operation for each
node-set are shared across all nodes in the set. Similarly, the
parameters for the edge set are shared across all edges. Hence,
in one convolution layer, we have six parameters: Wu, Wv ,
We, bu, bv , and be.

Note that several GraphSAGE extensions have been
proposed to incorporate edge features in the convolution
operation, such as PNA [35], EGNN [36], EGAT [29],
etc. [30], [37]–[39]. However, most of the methods only
use the edge feature as an additional input for computing
the next node representations without generating new edge
representations as required in our model. Our convolution
and message passing scheme is most closely related to the
work of You, et. al. [40], where they also generate new edge
representation. The differences are in the parameterization
and normalization used in the convolution layer, as well as
the domain area of the use cases (handling missing data vs.
anomaly detection). Our convolution and message passing
scheme is designed specifically for our network architecture.

B. Network Architecture

We are now ready to present the GraphBEAN architecture
for anomaly detection on bipartite node-and-edge-attributed
graphs. GraphBEAN follows an autoencoder-like architecture,
where a network is tasked to reconstruct the original input. The
network is given a bottleneck to prevent the network from just

Fig. 1. GraphBEAN architecture and message passing scheme

copying the input. For example, it has to produce a low di-
mensional latent variable before reconstructing the input [41].

In our architecture, the encoder takes a bipartite node-
and-edge-attributed graph as the input and produces latent
representations of the nodes only. However, the decoder is
required to reconstruct the full original graph, i.e., the graph
structure, node attributes edges attributes. The decoder is
divided into two parts: the feature decoder, which reconstructs
the node and edge features, and the structure decoder, which
reconstructs the graph structure. This construction forces the
latent representation of each node to also encode all neighbor-
ing edge features in addition to the local graphical structure
and neighboring node features. Finally, we use the nodes and
edges reconstruction error as the base for determining the
anomaly score for each node and edge in the bipartite graph.

Even though several graph neural network architectures for
anomaly detection have been proposed by previous works
[8]–[14], [31]–[34], GraphBEAN architecture is distinct in
several aspects. First, previous works can only detect node-
level anomalies, whereas GraphBEAN detects both node-
level and edge-level anomalies. Second, as GraphBEAN needs
to accommodate edge representations, its message passing
operation is designed differently from previous works, which
do not need to handle edge representations. Third, the design
of the latent representation in GraphBEAN is unique, as the
node latent representations in the network need to encode all
the neighboring (and its own) node features, node structures, as
well as edge features that are connected to the node in K-hop.
The node latent representations of the previous architectures
do not need to encode the neighboring edge features. We now
explain the detail of GraphBEAN architecture as follows.

1) Encoder: The encoder consists of K/2 graph convolu-
tion layers. We initialize the input to the first layer as the
original input graph feature for each node and edge, i.e.:

{hu
i }(0) = xu

i {hv
j}(0) = xv

j {he
i,j}(0) = xe

i,j . (7)

The subsequent layers take the output of the previous layer as
their input. Every layer outputs new node and edge representa-
tions, {hu

i }(k), {hv
j}(k), and {he

i,j}(k), except the last encoder
layer (K/2-th layer) where it only outputs node representations
{hu

i }(K/2) and {hv
j}(K/2). These node representations become

the latent representation (denoted as z) for each node, i.e.:

zui = {hu
i }(K/2) zvj = {hv

j}(K/2). (8)

2) Feature Decoder: The feature decoder also consists
of K/2 convolution layers. The first layer takes the latent
representations of the nodes in U and V as the input without
accepting edge representations. Therefore, the message col-
lected in the message passing scheme is simplified to:

Msg[)ui]
(K

2 +1) =
{
zui ∪ Agg

{
zvj

∣∣∀vj ∈ N (ui)
}}

(9)

Msg[)vj]
(K

2 +1) =
{
zvj ∪ Agg

{
zui

∣∣∀ui ∈ N (vj)
}}

(10)

Msg[)ei,j]
(K

2 +1) =
{
zui ∪ zvj

}
. (11)

The remaining convolution layers follow the normal scheme
as described previously. The output of the last layer becomes
the reconstructed node and edge features:

x̂u
i = {hu

i }(K) x̂v
j = {hv

j}(K) x̂e
i,j = {he

i,j}(K), (12)

which will be compared to the original input features.
3) Structure Decoder: In the feature decoder, the graph

structure is given to the model as the basis for passing the
messages, thus only providing limited information on the
graph structure. Therefore, in order to enforce the latent
variable’s encoding of the graph structure, we use a structure
decoder. From the latent representations zui and zvj , it predicts
if node ui in U is connected to node vj in V . It works by
passing zui to a K/2 layers of multi-layer perceptron (MLPu)
and passing zvj to MLPv . It then uses the dot product of the
output of each MLPs, and passes it to a sigmoid function to
produce the probability of ui connected to vj , i.e.:

Pr(Ai,j=1) = sigm
(
MLPu(z

u
i)

⊤ · MLPv(z
v
j)
)
, (13)

which will be compared to the adjacency matrix A.

C. Model Training

As we have constructed our network architecture, in this
section, we will describe the procedure to train the network.

1) Negative Sampling for Structure Decoder: The edge
prediction formula in the structure decoder (Eq. 13) defines the
probability for every pair of nodes in U and V . In practice,
the majority of node pairs are not connected. Therefore, to
gain more efficiency, we can just compute the probability
for a subset of the pairs without incurring any performance
degradation. Let E+ denote the set of pairs where ui and vj
are connected in the graph, i.e. E+ = {(i, j) | Ai,j = 1},
whereas E− denotes the set of pairs that are not connected,
i.e. E− = {(i, j) | Ai,j = 0}. We define the set E± as the set
of all indices E± = E+∪E−. In our training procedure, we do
not use all items in E−. Rather, we only sample a small portion
of E− and combine it with E+ to get the set of pairs used in
the training Ẽ±, i.e., Ẽ± = E+ ∪ Sample(E−). We use the
standard uniform random sampling of the negative pairs E−

with a pre-specified number of samples, e.g., a small multiple
of the number of positive pairs (E+).

2) Loss Function: Similar to other autoencoder-like archi-
tectures, the loss function we use is a type of reconstruction
loss. Let X̂u, X̂v , and X̂e be the matrices that collect the
network’s output for all nodes in U , all nodes in V , and all
edges, respectively. Our training objective function is the com-
bination of the mean squared error (MSE) of node U feature
reconstruction, the MSE of node V feature reconstruction,
the MSE of edge feature reconstruction, and the binary cross
entropy (BCE) of the structure decoder’s edge prediction. The
following is the formulation of our loss function (L):

L = MSE(Xu, X̂u) + MSE(Xv, X̂v)

+ MSE(Xe, X̂e) + ηBCE(Ẽ±,A), where: (14)

MSE(X, X̂) = 1
nm

∑n
i=1

∑m
l=1

(
Xi,l − X̂i,l

)2

, and (15)

BCE(Ẽ±,A) = − 1

|Ẽ±|

∑
(i,j)∈Ẽ±

{
Ai,j log(Pr(Ai,j = 1))

+ (1−Ai,j) log(1− Pr(Ai,j = 1))
}
, (16)

with η denotes a constant for balancing the feature decoder’s
MSE and the structure decoder’s BCE.

3) Forward and Backward Propagation: Now, we have all
the components of our GraphBEAN model. In the training pro-
cess, we first perform forward propagation by feeding the input
data to the encoder to produce the latent representations, then
pass them to both feature and structure decoders to produce the
reconstructed data. We then use the loss function to compute
the objective of our optimization. Algorithm 1 provides the
detailed step-by-step process of performing forward propaga-
tion in GraphBEAN, covering all the network components we
discussed above. Figure 1b also provides an illustration of the
process. For computing backward propagation (gradient) and
performing update to the model, we resort to a ML framework.

D. Anomaly Score

After we finish the training, we produce anomaly scoring
functions for the edges as well as the nodes in U and V . Given

Algorithm 1 GraphBEAN forward propagation
Require: graph G = (U ,V, E ,Xu,Xv,Xe); even number of layers

K; parameters: W(k)
u ,W

(k)
v ,W

(k)
e , b(k)

u ,b
(k)
v , and b

(k)
e ;

structure decoder’s MLPs: MLPu and MLPv

Ensure: loss/objective value
▷ initial representations ◁
{hu

i }(0) ← xu
i , ∀i ∈ {1, · · · , nu}

{hv
i }(0) ← xv

j , ∀j ∈ {1, · · · , nv}
{he

i,j}(0) ← xe
i,j , ∀ei,j ∈ E

▷ encoder ◁
for k = 1, . . . ,K/2 do

compute messages: Msg[→ ui]
(k) and Msg[→ vj]

(k), for all
nodes in U and V using Eq. (1) and Eq. (2)
compute all node representations: {hu

i }(k) and {hv
j }(k), using

Eq. (4) and Eq. (5)
if k ̸= K/2 then

compute Msg[→ ei,j]
(k) for all edges using Eq. (3)

compute edge representations: {he
i,j}(k) using Eq. (6)

▷ latent representations ◁
zui ← {hu

i }(K/2), ∀i ∈ {1, · · · , nu}
zvj ← {hv

j }(K/2), ∀j ∈ {1, · · · , nv}
▷ feature decoder ◁
for k ← K/2 + 1, · · · ,K do

if k = K/2 + 1 then
compute Msg[→ ui]

(k), Msg[→ vj]
(k), and Msg[→

ei,j]
(k) Eq. (9), Eq. (10), and Eq. (11)

else
compute Msg[→ ui]

(k), Msg[→ vj]
(k), and Msg[→

ei,j]
(k) Eq. (1), Eq. (2), and Eq. (3)

compute all representations: {hu
i }(k), {hv

j }(k) and {he
i,j}(k),

using Eq. (4), Eq. (5), and Eq. (6)
▷ reconstructed features ◁
x̂u
i ← {hu

i }(K), ∀i ∈ {1, · · · , nu}
x̂v
j ← {hv

j }(K), ∀j ∈ {1, · · · , nv}
x̂e
i,j ← {he

i,j}(K), ∀ei,j ∈ E
▷ structure decoder ◁
perform negative sampling, combine it with E as Ẽ±
compute edge probability Pr(Ai,j = 1), ∀(i, j) ∈ Ẽ±
▷ loss/objective value ◁
ℓ← compute loss using Eq. (14)
return ℓ

an input graph, the scoring functions are computed by first
performing a forward propagation to the encoder and decoders
and then computing individual node/edge reconstruction error.
As in other autoencoder-based models, since the model opti-
mizes a reconstruction loss, normal interactions which com-
monly occur in the graph can be easily reconstructed. On the
other hand, anomalous interactions, which rarely occur, suffer
from high reconstruction errors. We define the edge scoring
functions as the weighted combination of the reconstruction
error of the edge features and the BCE error of predicting if
the edge should exist in the graph, i.e.:

scoree(ei,j) = MSE(xe
i,j , x̂

e
i,j) + ηBCE(ei,j). (17)

We then define the scoring function for the nodes in U and
V . The anomaly score of a node is the combination of the
reconstruction error of its node feature and aggregation of the
anomaly score of all edges connected to the node, i.e.:

scoreu(ui) = MSE(xu
i , x̂

u
i)+ Agg

ei,j∈M(ui)

scoree(ei,j) (18)

TABLE I
DATASET PROPERTIES

Dataset #node U #node V #edge U deg. V deg. #ft. U #ft. V #ft. E +ratio U +ratio V +ratio E
FINEFOODS-SMALL 9,705 4,879 18,523 1.9 3.8 11 11 384 0.013 0.026 0.037
MOVIES-SMALL 9,622 6,366 28,147 2.9 4.4 11 11 384 0.013 0.019 0.020
WIKIPEDIA 8,227 1,000 18,257 2.2 18.3 174 174 345 0.023 0.071 0.025
REDDIT 10,000 984 78,516 7.9 79.8 174 174 345 0.038 0.102 0.012
FINEFOODS-LARGE 256,059 74,258 560,804 2.2 7.6 11 11 384 0.004 0.014 0.013
MOVIES-LARGE 889,176 253,059 7,834,236 8.8 31.0 11 11 384 0.001 0.005 0.002

scorev(vj) = MSE(xv
j , x̂

v
j)+ Agg

ei,j∈M(vj)

scoree(ei,j). (19)

The aggregation function AGG could be MEAN or MAX,
depending on the need of the applications. The rationale of the
aggregation is that since the entities (user/item) are the actors
of the interactions, an anomaly in the interactions should affect
the anomaly score of the entities involved.

E. Neighborhood Sampling and Inductive Learning

So far, our training procedure requires access to the full
graph structure as well as all node and edge features. This full
graph training is, however, not scalable to large-size graphs.
To be able to scale the learning algorithm to large graph
data, we have to perform stochastic training via minibatching
and neighborhood sampling. Previous scalable graph models,
like GraphSAGE, have proposed neighborhood sampling al-
gorithms. However, due to our custom convolution operation
and network architecture, we have to adjust the flow of the
messages from one layer to the next, particularly message
flows to the edges and bipartite nodes. Specifically, from the
node-set used for minibatching (either U or V), after we get a
batch of nodes, we sample nodes from the other node-set and
the edge connecting them, which we then set as the target sub-
graph. We then repeatedly expand this sub-graph K times by
sampling its neighboring nodes and edges, while constructing
message flow graphs from one layer to the next. After K times
expansion, we will get the input sub-graph to the first layer of
GraphBEAN. This minibatching and neighborhood sampling
step enables GraphBEAN to run on large-scale graphs.

We have also only discussed anomaly detection in a trans-
ductive setting, where the model provides reasoning only on
the observed data. The inductive learning setting requires
the model to come up with a general principle so that it
can be applied to newly observed nodes/edges/(sub)-graphs.
Fortunately, unlike many previous GNN anomaly models, the
GraphBEAN inductive capability comes for free. Its architec-
tures, particularly the convolution operation, message passing
and aggregation, as well as neighborhood sampling, are built
on top of the GraphSAGE architecture, a graph neural network
model famously known for its inductive capability.

V. EXPERIMENTS

To evaluate our approach, we apply GraphBEAN to detect
anomalies in several real-world public datasets.

A. Experiment Setup

1) Datasets: We use publicly available datasets that have
been used in previous research. The WIKIPEDIA dataset [42]
describes the editing activity of Wikipedia contributors to
wiki pages, The REDDIT dataset [43] includes the posting
activity of Reddit users to subreddits. In both datasets, the
edge features are created by taking the mean and max ag-
gregate over temporal action features constructed by Kumar
et al. [44], plus some temporal statistics. Similarly, the node
attributes contain statistical variables and a mean aggregate
over the action features. Two other datasets, FINEFOODS
and MOVIES [45] describe reviewing activities of Amazon
users to products sold in Amazon website’s fine-foods and
movies categories, respectively. The node features contain
statistics and summaries of users’ reviewing activities and
product reviews. The edge features contain the embedding
of the review text. We process the original reviews using
the SentenceBERT language model [46] to produce sentence
embeddings. Since the size of FINEFOODS and MOVIES is
quite large, we create two versions of the datasets. The small
datasets, FINEFOODS-SMALL and MOVIES-SMALL, where
we sample a subgraph containing around ten thousand nodes,
and the large datasets, FINEFOODS-LARGE and MOVIES-
LARGE, containing the full-size graphs. The properties of the
six datasets above are shown in Table I. The table describes the
dateset names (first column), the number of nodes in node-set
U and V as well as the number of edges in each dataset (next
three columns). It also includes the average degree of U and
V nodes, i.e., the average number of edges that are connected
to the nodes (next two columns), as well as the number of
node and edge features (next three columns).

2) Anomaly Injection: We inject anomalies into the at-
tributed graphs, as there are no ground truth anomalies in the
datasets. The anomaly injection techniques are also common
in previous anomaly detection papers [6], [8], [9], [31], [47],
[48]. Specifically, we follow the anomaly injection technique
described in Ding et al. [8], with some modifications to
accommodate the bipartite structure and edge features as well
as to simulate real-world anomalies more realistically. For the
graph datasets, we inject two anomaly components, topolog-
ical structure and attribute anomalies. To inject topological
anomaly, we randomly select a small number of nodes in
U ∈ U and V ∈ V . We then create a fully dense block by
making all nodes in U connected with an edge to all nodes in
V , or a partially dense block, by randomly choosing a fraction

of pairs of nodes in (U, V) to be connected via an edge. The
intuition is that in real-world scenarios, a small dense structure
in a graph is a typical anomalous substructure in which the
interactions are much more intense than average [6], [8].

For injecting attributes anomaly, we use two different tech-
niques. The outside of a confidence interval technique [49],
[50] injects a sample where a fraction of the features are re-
placed randomly from a truncated Gaussian distribution where
the density of x ∈ µ̂± cσ̂ is set to zero. Here, µ̂ and σ̂ are the
mean and standard deviation of the data, whereas c is the con-
fidence interval constant. The scaled Gaussian noise technique
[49], [51] selects one of the samples and augments it with a
noise drawn from a Gaussian distribution with zero mean and
cσ̂ standard deviation, where c is the scaling constant.

We augment the dataset with anomalies by injecting a
combination of topological structure and feature anomalies
multiple times. In each one, we first inject structure anomaly
with the number of nodes involved in the anomaly randomized
between 2 and 20 in each node-set. We also randomize
between performing full or partial dense block anomaly. If
we perform a partial dense block anomaly, we randomize the
fraction of the connected node pairs between 0.2 and 1.0. We
then inject feature anomaly to the features of the edge we
just constructed by selecting either “outside of a confidence
interval” or “scaled Gaussian noise” technique, with c set
randomly between 2 and 4. We also optionally inject feature
anomalies into the node features. This anomaly construction
provides a randomly weighted combination of structure and
feature anomalies. We repeatedly inject the small block of
anomalies 20 times (100 times for FINEFOODS-LARGE and
MOVIES-LARGE) to simulate multiple anomaly occurrences
in the dataset, each with its own characteristics. All the edges
and the nodes involved in the injected anomalies are labeled as
anomalous. The ratio of positive cases (anomalous) compared
to all cases can be seen in the last three columns of Table I.

3) Baselines: We compare GraphBEAN with several
anomaly detection techniques, both classical and deep learning
models. From the classical models, we select FRAUDAR [6],
a popular anomaly model for bipartite graphs, and Isolation
Forest [52], a tree-based anomaly detection widely used in
industry. From the pool of previous GNN anomaly models,
we select the DOMINANT [8], as it is the first GNN model
on anomaly detection; its direct extension AnomalyDAE
[9]; and two other more recent GNN models. Note that,
like many other GNN models, they work on homogeneous
node-attributed graphs. The complete list of the baselines are:

1) FRAUDAR [6]. It detects dense block anomalies even
with camouflage in bipartite graphs.

2) Isolation Forest [52]. It is a classical tree-based feature-
only anomaly detection model.

3) DOMINANT [8]. It is a deep learning model for anomaly
detection on homogeneous node-attributed graphs.

4) AnomalyDAE [9]. A dual autoencoders model for homo-
geneous node-attributed graphs.

5) CONAD [13]. It uses data augmentation and contrastive
loss to detect anomalies in the graphs. We use the

unsupervised version presented in [53].
6) AdONE [10]. An outlier-resistant embedding construc-

tion that can also be used to detect anomalies.

Since the baseline methods are designed to solve a slightly
different problem, we make a few modifications to solve
Problem 1. FRAUDAR only uses graph structure as the input.
We use the deletion order of the edge and node for constructing
the anomaly score for the node and edges, such that the later
a node/edge is deleted, the higher its anomaly score. Isolation
Forest uses features only. In each run, we create three
separate models for node U features, node V features, and
edge features. For DOMINANT, AnomalyDAE, CONAD, and
AdONE, we treat the bipartite graphs as homogeneous graphs
by removing the node type information and aggregating the
edge features in the original graph into node features. We
then run the model to produce anomaly scores for each node.
The anomaly scores for each edge are produced by taking
the average anomaly score of the two nodes connected to it.

B. Implementation

We implement our method, including the convolution op-
eration, message passing, and neighborhood sampling, on top
of PyTorch and PyTorch Geometric [54] frameworks. For the
FRAUDAR, we use the author’s implementation [6], whereas,
for the Isolation Forest, we use Scikit-Learn implementation.
For the deep learning baselines (DOMINANT, AnomalyDAE,
CONAD, and AdONE), we use PyGOD [53] implementation
of the algorithms. The experiments are conducted in a single
Ubuntu Linux machine from the AWS Cloud Service with
8 CPU cores, 60GB of RAM, and an NVIDIA Tesla K-80
GPU, except for MOVIES-LARGE where we use a machine
with larger RAM (120GB).

C. Experiment Setup

For each dataset, we run the experiment 10 times, except
for the FINEFOODS-LARGE and MOVIES-LARGE where we
run it for 5 and 1 times, respectively, due to their dataset size.
In each run, we rerun the anomaly injection procedure so that
each run has a different set of anomalies. We keep the set of
anomalies to be the same for our method and all the baselines
for the comparability of the results. In the experiment, we
set the η = 0.2 for our method. For DOMINANT and
AnomalyDAE, we set the parameter that balances the feature
and structure decoder to be 0.8, as it also puts 0.2 weight on
the structure decoder. For computing node anomaly scores,
we use the Mean aggregation for WIKIPEDIA and REDDIT
due to their higher average degree of V nodes. We use the
Max aggregation for other datasets. The training procedures
in FINEFOODS-SMALL, MOVIES-SMALL, WIKIPEDIA, and
REDDIT experiments are conducted in a transductive setting.
In FINEFOODS-LARGE and MOVIES-LARGE experiments, the
training process is done in an inductive fashion. We sample
the sub-subgraph in each training epoch with a maximum of
10 neighbors for each node. However, in the evaluation, we
use the full graph data without sampling.

TABLE II
THE MEAN AND (IN PARENTHESIS) STANDARD DEVIATION OF THE AUC-PR METRICS OVER MULTIPLE EXPERIMENT RUNS IN SMALL DATASETS. BOLD

NUMBERS INDICATE THE BEST OR NOT-SIGNIFICANTLY-WORSE-THAN-THE-BEST RESULT (WILCOXON SIGNED-RANK TEST, α = 0.05).

Dataset FINEFOODS-SMALL MOVIES-SMALL WIKIPEDIA REDDIT
Model U V E U V E U V E U V E

FRAUDAR 0.256
(0.07)

0.392
(0.07)

0.279
(0.13)

0.229
(0.12)

0.188
(0.11)

0.260
(0.16)

0.102
(0.03)

0.085
(0.09)

0.043
(0.04)

0.059
(0.02)

0.101
(0.01)

0.011
(0.007)

IsoForest 0.090
(0.02)

0.166
(0.04)

0.794
(0.12)

0.127
(0.05)

0.181
(0.08)

0.827
(0.10)

0.226
(0.06)

0.499
(0.12)

0.278
(0.10)

0.361
(0.08)

0.608
(0.07)

0.172
(0.039)

DOMINANT 0.735
(0.10)

0.721
(0.10)

0.686
(0.12)

0.631
(0.09)

0.708
(0.08)

0.389
(0.16)

0.164
(0.03)

0.179
(0.04)

0.049
(0.02)

0.121
(0.02)

0.186
(0.01)

0.016
(0.003)

AnomalyDAE 0.770
(0.09)

0.773
(0.09)

0.683
(0.12)

0.679
(0.12)

0.753
(0.10)

0.556
(0.10)

0.174
(0.03)

0.193
(0.04)

0.051
(0.02)

0.128
(0.02)

0.192
(0.02)

0.015
(0.003)

CONAD 0.740
(0.10)

0.721
(0.10)

0.691
(0.12)

0.684
(0.09)

0.695
(0.08)

0.564
(0.09)

0.165
(0.03)

0.182
(0.04)

0.052
(0.05)

0.116
(0.02)

0.180
(0.18)

0.016
(0.003)

AdOne 0.239
(0.05)

0.162
(0.03)

0.048
(0.01)

0.164
(0.03)

0.129
(0.03)

0.021
(0.01)

0.205
(0.04)

0.128
(0.03)

0.025
(0.01)

0.138
(0.02)

0.133
(0.01)

0.008
(0.001)

GraphBEAN (ours) 0.855
(0.08)

0.875
(0.07)

0.876
(0.09)

0.911
(0.04)

0.911
(0.04)

0.888
(0.08)

0.441
(0.09)

0.571
(0.03)

0.415
(0.11)

0.427
(0.06)

0.631
(0.04)

0.296
(0.038)

In all of our experiments, we use GraphBEAN with 4 layers,
where we split it into 2 convolution layers for the encoder, and
2 convolution layers for the feature decoder. The MLPs in
the structure decoder also comprise 2 dense layers. Similarly,
we also use 4 layers for the GNN-based baselines (DOM-
INANT, AnomalyDAE, CONAD, and AdOne). For training
GraphBEAN, we use the Adam optimizer with a learning
rate of 0.01. The PyGOD implementation of the GNN-based
baselines also uses the Adam optimizer. Similarly, we also
set the learning rate to be 0.01. This learning rate is decided
after running a few experiments using different learning rates
(i.e., 0.0001, 0.001, 0.003, 0.01, 0.03), and observing that the
0.01 learning rate usually performs the best for all models.
We train both GraphBEAN and other GNN models for 100
epochs. In all experiments, the dimension of latent variables
is set to 32. For GraphBEAN experiments on large datasets,
we use a batch size of 2048. For the Isolation Forest model,
we use the default parameters in Scikit-Learn (e.g., the number
of estimators, maximum sample in each estimator, bootstrap,
etc.). In all experiments and all models, we set the random seed
to 0. Finally, for the edge prediction in the structure decoder,
we sample the negative cases (non-connected node pairs) as
many as three times the number of edges (connected node
pairs) in the graph (for full graph training) or in a batch (for
stochastic training).

D. Experiment Results

1) Evaluation Metric: As different methods have different
scoring systems, we adopt a ranking-based metric to evaluate
the models. Specifically, we use the Area Under the Precision-
Recall Curve (AUC-PR) as the evaluation metric. Compared
with other alternatives, like the ROC curve, Precision-Recall
curve provides a more informative picture of an algorithm’s
performance in the case of very imbalanced dataset as in
anomaly detection, where the number of anomaly cases is
far less than the number of normal cases (see [55], [56]).

TABLE III
THE MEAN AND (IN PARENTHESIS) STANDARD DEVIATION OF THE
AUC-PR METRICS OVER MULTIPLE EXPERIMENT RUNS IN LARGE

DATASETS (FINEFOODS-LARGE AND MOVIES-LARGE)

Dataset FINEFOODS-LARGE MOVIES-LARGE
Model U V E U V E

FRAUDAR 0.093
(0.02)

0.195
(0.03)

0.077
(0.02) 0.004 0.007 0.001

IsoForest 0.023
(0.00)

0.098
(0.02)

0.805
(0.05) 0.008 0.025 0.722

GraphBEAN 0.701
(0.07)

0.813
(0.05)

0.875
(0.03) 0.413 0.547 0.779

In addition, practitioners oftentimes adjust the balance of the
precision and recall of a deployed model to achieve the best
business impact, making a threshold-free metric like AUC-PR
suitable for anomaly detection evaluation.

2) Overall Results: The average and standard deviation
of the AUC-PRs over multiple runs in each dataset are
presented in Table II and Table III. The results are divided
into three sections, the U nodes, the V nodes, and the
edges E anomaly detections. For all datasets except MOVIES-
LARGE, we perform hypothesis testing to see if the results
are significantly different. We use the Wilcoxon signed-rank
test with α = 0.05. In the table, bold numbers indicate the
best or not-significantly-worse-than-the-best result, based on
the hypothesis testing.

As we can see from the tables, GraphBEAN significantly
outperforms all baselines in all datasets for edge anomaly de-
tection tasks, oftentimes by a large margin. For node anomaly
detection tasks, GraphBEAN also significantly outperforms
all models in nearly all datasets in both U and V nodes.
Only one case in which one of the baselines (Isolation Forest)
does not perform significantly worse than GraphBEAN, i.e.,

Fig. 2. Precision-recall curves of the edge anomaly detection tasks.

in Reddit’s V node anomaly detection.1 However, in this case,
GraphBEAN still outperforms Isolation Forest. For Movies-
Large datasets, even though we do not perform hypothesis
testing, we can see that GraphBEAN outperforms the baselines
by a considerably large margin.

As expected, FRAUDAR does not perform that well in our
experiments, as it does not use the attributes in the detections.
Isolation Forest provides good performance on edge anomaly
but falls short on node anomaly as it treats node and edge
features independently when the anomalous signal largely
comes from the edges. However, its performances on edge
anomaly are still significantly lower than GraphBEAN’s in
all datasets. The DOMINANT, AnomalyDAE, and CONAD
perform reasonably well on node anomaly detection, as the
node features contain aggregations of edge features. However,
since the information available is just an aggregation of
edge features, their performances do not match our model in
detecting node anomalies. The DOMINANT, AnomalyDAE,
and CONAD are also less effective in detecting edge anomaly
as it is not the focus of the models. Surprisingly, AdONE
performs significantly worse than DOMINANT, Anomaly-
DAE, CONAD, and our model. Due to the requirement of
access to full adjacency matrix in their objective computation,
DOMINANT, AnomalyDAE, and AdONE are not scalable to
the size of FINEFOODS-LARGE and MOVIES-LARGE dataset.
Therefore, we do not have their results for FINEFOODS-
LARGE and MOVIES-LARGE.2

1Note that the base AUC-PR for a baseline (random) classifier is determined
by the ratio of positives (P) and negatives (N) as P / (P + N) [56]. Therefore,
our seemingly low value results for WIKIPEDIA and REDDIT are actually
much better than the base AUC-PR, as the positive (anomalous) ratios in the
datasets are very small, i.e., very imbalanced anomaly datasets (see Table I).

2PyGOD [53] provides unofficial neighborhood sampling implementations
for DOMINANT, AnomalyDAE, and AdONE. We have tried to run the Py-
GOD implementations on FINEFOODS-LARGE and MOVIES-LARGE dataset
with no success (memory error), since it requires the full adjacency to be
stored in memory as a dense matrix. This requirement is not feasible for
FINEFOODS-LARGE and MOVIES-LARGE due to their size.

Fig. 3. The effect of balancing constant in FINEFOODS-SMALL

3) Precision-Recall Curve: The AUC-PR metric provides
a good overall look at the prediction performance. However,
practitioners may want to see the precision vs. recall trade-
off at a given threshold. In practice, when it comes to the
deployment of an anomaly detection system, practitioners
need to select a threshold for the detection. The precision-
recall curve provides a tool to perform trade-off analysis at
multiple thresholding points. We present the precision-recall
curve of the edge anomaly detection for a single experiment
run on FINEFOODS-SMALL, MOVIES-SMALL, WIKIPEDIA,
and REDDIT in Figure 2. We plot the precision-recall curves
for GraphBEAN and the main baselines (Isolation Forest,
DOMINANT, and AnomalyDAE). As we can see from the
figure, at almost all thresholding points in all of those datasets,
our method outperforms all the baselines, sometimes by a
significant margin. The figure also shows that the benefit of our
method can be seen more clearly on the thresholding points
that matter to the practical use case, for example, the thresh-
olding points that result in around 0.9 recall in FINEFOODS-
SMALL, and around 0.8 recall in MOVIES-SMALL. This result
confirms the superiority of our model for anomaly detection
on bipartite node-end-edge-attributed graphs.

4) The effect of balancing constant: The objective function
of DOMINANT, AnomalyDAE, and our method contains a pa-
rameter for balancing the feature and structure decoder losses.
In this subsection, we study the effect of this constant on the
performance of the model. Since our formulation is slightly
different from both DOMINANT and AnomalyDAE, we adjust
it accordingly. In our formulation, the weight of the feature
decoder is always set as 1, whereas the weight of the structure
decoder is η. In DOMINANT and AnomalyDAE, the weight of
the feature decoder is set as α, and the weight of the structure
decoder is 1 − α. Figure 3 shows the effect of this constant
on the AUC-PR metric in one of the experiment runs for
FINEFOODS-SMALL. We adjust our parameter to match DOM-
INANT and AnomalyDAE (α) in the figure. As we can see
from the figure, the performance of all methods is relatively
stable over the various value of α (from 0.2 to 0.9), except for
the extreme values (closer to 0 or 1). The constant value that
we used in the previous experiments (α = 0.8) also produces
one of the best-performing results in Figure 3. This adds vali-
dation to the hyperparameter choice in the main experiments.

VI. CONCLUSIONS

We proposed GraphBEAN for anomaly detection in bipartite
node-and-edge-attributed graphs, which is capable of detecting
node-level and edge-level anomalies. Our model is scalable,
i.e., capable of running on large industrial-sized graphs. We
demonstrated its performance benefits over the baselines in
detecting anomalies in real-world datasets. For the future
direction, we plan to extend our method to detect node and
edge level anomalies in more general heterogeneous graphs.

REFERENCES

[1] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and
L. Akoglu, “A comprehensive survey on graph anomaly detection with
deep learning,” IEEE TKDE, 2021.

[2] W. Hilal, S. Gadsden, and J. Yawney, “Financial fraud: A review of
anomaly detection techniques and recent advances,” Expert systems With
applications, 2022.

[3] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in SDM, 2003.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[5] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: a survey,” DMKD Journal, 2015.

[6] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos,
“Fraudar: Bounding graph fraud in the face of camouflage,” in ACM
KDD, 2016.

[7] H. Wang, C. Zhou, J. Wu, W. Dang, X. Zhu, and J. Wang, “Deep
structure learning for fraud detection,” in ICDM. IEEE, 2018.

[8] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on
attributed net.” in SDM, 2019.

[9] H. Fan, F. Zhang, and Z. Li, “Anomalydae: Dual autoencoder for
anomaly detection on attributed networks,” in ICASSP, 2020.

[10] S. Bandyopadhyay, S. V. Vivek, and M. Murty, “Outlier resistant
unsupervised deep architectures for attributed network embedding,” in
WSDM, 2020.

[11] Z. Chen, B. Liu, M. Wang, P. Dai, J. Lv, and L. Bo, “Generative
adversarial attributed network anomaly detection,” in CIKM, 2020.

[12] M. Jin, Y. Liu, Y. Zheng, L. Chi, Y.-F. Li, and S. Pan, “Anemone: Graph
anomaly detection with multi-scale contrastive learning,” in CIKM, 2021.

[13] Z. Xu, X. Huang, Y. Zhao, Y. Dong, and J. Li, “Contrastive attributed
network anomaly detection with data augmentation,” in PAKDD, 2022.

[14] S. Yang, B. Zhang, S. Feng, Z. Tan, Q. Zheng, J. Zhou, and M. Luo,
“Ahead: A triple attention based heterogeneous graph anomaly detection
approach,” arXiv preprint, 2022.

[15] Z. Chen and A. Sun, “Anomaly detection on dynamic bipartite graph
with burstiness,” in ICDM, 2020.

[16] T. Zhao, C. Deng, K. Yu, T. Jiang, D. Wang, and M. Jiang, “Gnn-based
graph anomaly detection with graph anomaly loss,” in KDD, 2020.

[17] W. Huang, Y. Li, Y. Fang, J. Fan, and H. Yang, “Biane: Bipartite
attributed network embedding,” in ACM SIGIR, 2020.

[18] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han, “On community
outliers and their efficient detection in information networks,” in ACM
KDD, 2010.

[19] E. Müller, P. I. Sánchez, Y. Mülle, and K. Böhm, “Ranking outlier nodes
in subspaces of attributed graphs,” in ICDEW. IEEE, 2013.

[20] B. Perozzi, L. Akoglu, P. Iglesias Sánchez, and E. Müller, “Focused
clustering and outlier detection in large attributed graphs,” in KDD,
2014.

[21] C. C. Noble and D. J. Cook, “Graph-based anomaly detection,” in ACM
KDD, 2003.

[22] W. Eberle and L. Holder, “Discovering structural anomalies in graph-
based data,” in ICDMW, 2007.

[23] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining behavior graphs
for “backtrace” of noncrashing bugs,” in SDM. SIAM, 2005.

[24] N. Shah, A. Beutel, B. Hooi, L. Akoglu, S. Gunnemann, D. Makhija,
M. Kumar, and C. Faloutsos, “Edgecentric: Anomaly detection in edge-
attributed networks,” in ICDMW. IEEE, 2016.

[25] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual analysis for anomaly
detection in attributed networks.” in IJCAI, 2017.

[26] Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng, “Anomalous: A joint
modeling approach for anomaly detection on attributed networks.” in
IJCAI, 2018.

[27] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[28] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” NIPS, 2017.

[29] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[30] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional net-
works,” in European Semantic Web Conference, 2018.

[31] K. Ding, J. Li, N. Agarwal, and H. Liu, “Inductive anomaly detection
on attributed net.” in IJCAI, 2021.

[32] X. Yuan, N. Zhou, S. Yu, H. Huang, Z. Chen, and F. Xia, “Higher-order
structure based anomaly detection on attributed networks,” in IEEE Big
Data, 2021.

[33] Y. Huang, L. Wang, F. Zhang, and X. Lin, “Are we really making much
progress in unsupervised graph outlier detection?” arXiv, 2022.

[34] Q. Wang, G. Pang, M. Salehi, W. Buntine, and C. Leckie, “Cross-domain
graph anomaly detection via anomaly-aware contrastive alignment,” in
AAAI, 2023.

[35] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal
neighbourhood aggregation for graph nets,” in NeurIPS, 2020.

[36] L. Gong and Q. Cheng, “Exploiting edge features for graph neural
networks,” in CVPR, 2019.

[37] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. Bronstein, and J. Solomon,
“Dynamic graph cnn for learning on point clouds,” ACM TOG, 2019.

[38] B. Rozemberczki, P. Englert, A. Kapoor, M. Blais, and B. Perozzi,
“Pathfinder discovery networks for neural message passing,” in WWW,
2021.

[39] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks,” in ICLR, 2020.

[40] J. You, X. Ma, Y. Ding, M. J. Kochenderfer, and J. Leskovec, “Handling
missing data with graph representation learning,” NeurIPS, 2020.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

[42] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Governance in social
media: A case study of the wikipedia promotion process,” in AAAI
ICWSM, 2010.

[43] H. Lakkaraju, J. McAuley, and J. Leskovec, “What’s in a name?
understanding the interplay between titles, content, and communities
in social media,” in AAAI ICWSM, 2013.

[44] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
trajectory in temporal interaction networks,” in KDD, 2019.

[45] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews,” in
WWW, 2013.

[46] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in EMNLP. ACL, 2019.

[47] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang,
“Netwalk: A flexible deep embedding approach for anomaly detection
in dynamic networks,” in ACM KDD, 2018.

[48] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph: Anomaly detection
in dynamic graph using attention-based temporal gcn.” in IJCAI, 2019.

[49] G. Steinbuss and K. Böhm, “Generating artificial outliers in the absence
of genuine ones—a survey,” ACM TKDD, vol. 15, no. 2, pp. 1–37, 2021.

[50] T. S. Pham, Q. U. Nguyen, and X. H. Nguyen, “Generating artificial
attack data for intrusion detection using machine learning,” in ACM
SoICT, 2014.

[51] H. Deng and R. Xu, “Model selection for anomaly detection in wireless
ad hoc networks,” in CIDM, 2007.

[52] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM.
IEEE, 2008.

[53] K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen,
H. Peng, K. Shu, G. H. Chen, Z. Jia, and P. S. Yu, “PyGOD: A python
library for graph outlier detection,” arXiv preprint, 2022.

[54] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop, 2019.

[55] J. Davis and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” in ICML, 2006.

[56] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets,” PloS ONE, 2015.

